Chemical Properties of Biochemical Relevance

  • C. H. Evans
Part of the Biochemistry of the Elements book series (BOTE, volume 8)


The chemistry of the lanthanides, unlike their biochemistry, has been extensively reviewed. Several books have been written on this subject (e.g., Vickery, 1953; Spedding and Daane, 1961), and numerous reviews exist (e.g., Moeller, 1973; Morris, 1976). In addition, many standard textbooks on inorganic chemistry have good sections on the lanthanides (e.g., Phillips and Williams, 1966; Cotton and Wilkinson, 1980). It is neither possible nor necessary to discuss all aspects of lanthanide chemistry in this chapter. Instead, those properties of the lanthanides which are most pertinent to their biochemical interactions will be reviewed. Particular attention will be paid to their similarities to Ca2+, as this forms the basis for many of the biochemical studies which employ lanthanides. The strategy of substituting Ca2+ by Ln3+ ions in biological systems owes much of its theoretical basis and development to R.J.P. Williams (Vallee and Williams, 1968; Williams, 1970; Williams, 1979). Such an approach has proved valuable because of the irony whereby Ca2+, biologically one of the most important metal ions, is chemically one of the least informative. The lanthanides, on the other hand, lend themselves to a number of analytical, investigative techniques (Chapter 3). The approach has proved an extremely successful one and is largely responsible for the sustained interest in lanthanide biochemistry.


Rare Earth Electron Paramagnetic Resonance Coordination Number Ionic Radius Hydration Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bamann, E., Trapmann, H., and Fischler, F., 1954. Behavior and specificity of cerium and lanthanum as phosphatase models towards nucleic acids and mononucleotides, Biochem. Z. 328:89–96.Google Scholar
  2. Banks, C. V., and Klingman, D. W., 1956. Spectrophotometric determinations of rare earth mixtures, Anal. Chim. Acta 15:356–363.CrossRefGoogle Scholar
  3. Barela, T.P., and Sherry, A.D., 1976. A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium, Anal. Biochem. 71:351–357.CrossRefPubMedGoogle Scholar
  4. Bleich, H.E., and Glasel, J.A., 1975. Catalysis of amide proton exchange by lanthanumions, J. Am. Chem. Soc. 97:6585–6586.CrossRefPubMedGoogle Scholar
  5. Bowen, J.M., 1972. Effects of rare earths and yttrium on striated muscle at the neuromuscular junction, Can. J. Physiol. Pharmacol. 50:603–611.CrossRefPubMedGoogle Scholar
  6. Boyd, G. E., 1959. Technetium and promethium, J. Chem. Educ. 36:3–14.CrossRefGoogle Scholar
  7. Boynton, W. V., 1979. Neutron activation analysis, in Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 457–470.Google Scholar
  8. Butcher, W. W., and Westheimer, F. H., 1955. La(OH)3 gel-promoted hydrolysis of phosphate esters, J. Am. Chem. Soc. 77:2420–2424.CrossRefGoogle Scholar
  9. Cartmill, J.A., and Dos Remedios, C.G., 1980. Ionic radius specificity of cardiac muscle, J. Mol. Cell. Cardiol. 12: 119–123.CrossRefGoogle Scholar
  10. Chamie, C., and Haissinsky, M., 1934. Effects of age and Po content on centrifugation of Po solutions, C. R. Acad. Sci. Paris 198:1229–1231.Google Scholar
  11. Chantler, P. D., 1983. Lanthanides do not function as calcium analogues in scallop myosin, J. Biol. Chem. 258:4702–4705.PubMedGoogle Scholar
  12. Choppin, G.R., and Graffeo, A. J., 1965. Complexes of trivalent lanthanide and actinide ions. II. Inner-sphere complexes, J. Inorg. Chem. 4:1254–1261.CrossRefGoogle Scholar
  13. Conzemius, R. J., 1979. Analysis of rare earth matrices by spark source mass spectrometry, in Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 377–404.Google Scholar
  14. Cotton, F.A., and Wilkinson, G., 1980. Advanced Inorganic Chemistry, 4th ed., Wiley, New York, Chapter 23.Google Scholar
  15. Dakubu, S., and Ekins, R.P., 1985. The fluorometric determination of europium ion concentration as used in time-resolved fluoroimmunoassay, Anal. Biochem. 144:20–26.CrossRefPubMedGoogle Scholar
  16. DeKalb, E. L., and Fassel, V. A., 1979. Optical atomic emission and absorption methods, in Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 405–440.Google Scholar
  17. Dos Remedios, C.G., 1977. Ion radius selectivity of skeletal muscle membranes, Nature 270:750–751.CrossRefPubMedGoogle Scholar
  18. Dower, S. K., Dwek, R. A., McLaughlin, A.C., Mole, L. E., Press, E. M., and Sunderland, C. A., 1975. The binding of lanthanides to non-immune rabbit immunoglobulin G and its components, Biochem. J. 149:73–82.PubMedCentralPubMedGoogle Scholar
  19. D’Silva, A. P., and Fassel, V. A., 1979. X-ray excited optical luminescence of the rare earths, in Handbook of the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 441–456.Google Scholar
  20. Eichhorn, G.L., and Butzow, J.J., 1965. Interactions of metal ions with polynucleotides and related compounds. III. Degradation of polyribonucleotides by lanthanum ions, Biopolymers 3:79–91.CrossRefPubMedGoogle Scholar
  21. Einspahr, H., and Bugg, C.E., 1984. Crystal structure studies of calcium complexes and implications for biological systems, in Metal Ions in Biological Systems (H. Sigel, ed.), Vol. 17, Marcel Dekker, New York, pp. 51–97.Google Scholar
  22. Ellis, K. J., and Morrison, J.F., 1975. A problem encountered in a study of the effects of lanthanide ions on enzyme-catalyzed reactions, Anal. Biochem. 68:429–435.CrossRefPubMedGoogle Scholar
  23. Evans, C.H., 1981. Interactions of tervalent lanthanide ions with bacterial collagenase (clostridiopeptidase A), Biochem. J. 195:677–684.PubMedCentralPubMedGoogle Scholar
  24. Faktor, M.M., and Hanks, R., 1969. Calculation of the third ionization potentials of the lanthanons, J. Inorg. Nucl. Chem. 31:1649–1659.CrossRefGoogle Scholar
  25. Fernandez-Gavarron, F., Brandt, J. G., and Rabinowitz, J.L., 1987. A simple spectrophotometric assay for micromolar amounts of lanthanum in the presence of calcium and phosphate, J. Bone Min. Res. 2:421–425.CrossRefGoogle Scholar
  26. Glasel, J.A., 1973. Lanthanide ions as nuclear magnetic resonance chemical shift probes in biological systems, in Current Research Topics in Bioinorganic Chemistry (S.J. Lippard, ed.), Vol. 18, Wiley, New York, pp. 383–413.Google Scholar
  27. Good, N.E., Winget, G.D., Winter, W., Connolly, I., Izawa, S., and Singh, R.M.M., 1966. Hydrogen ion buffers for biological research, Biochemistry 5:467–477.CrossRefPubMedGoogle Scholar
  28. Gschneidner, K. A., and Eyring, L. (eds.), 1979. Handbook on the Physics and Chemistry of the Rare Earths, Vol. 4, North-Holland, Amsterdam.Google Scholar
  29. Homer, R. B., and Mortimer, B.D., 1978. Europium II as a replacement for calcium II in conconavalin A. A precipitation assay and magnetic circular dichroism study, FEBS Lett. 87:69–72.CrossRefPubMedGoogle Scholar
  30. Horrocks, W. DeW., 1982. Lanthanide ion probes of biomolecular structure, in Advances in Inorganic Biochemistry (G. L. Eichhorn and L. G. Marzilli, eds.), Vol. 4, Elsevier, New York, pp. 201–261.Google Scholar
  31. Horrocks, W. DeW., and Sudnick, D. R., 1979. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules, J. Am. Chem. Soc. 101:334–340.CrossRefGoogle Scholar
  32. Jackson, K.S., and Reinacker, G., 1930. Solubilities of the octahydrates of the rare-earth sulfates, J. Chem. Soc. 1930:1687–1691.CrossRefGoogle Scholar
  33. Jones, R., and Dwek, R.A., 1974. The mechanism of water-proton relaxation in enzyme paramagnetic-ion complexes. I. The Gd3+ -lysozyme complex, Eur. J. Biochem. 47: 271–283.CrossRefPubMedGoogle Scholar
  34. Kanapilly, G.M., 1980. In vitro precipitation behaviour of trivalent lanthanides, Health Phys. 39:343–346.CrossRefPubMedGoogle Scholar
  35. Karraker, D. G., 1970. Coordination of trivalent lanthanide ions, J. Chem. Educ. 47:424–430.CrossRefGoogle Scholar
  36. King, J.F., and Romer, A., 1933. Adsorption of thorium B and thorium C from solution, J. Phys. Chem. 37:663–673.CrossRefGoogle Scholar
  37. Kurbatov, J.D., and Pool, M.L., 1944. Isolation of pure radioactive Ce, Phys. Rev. 65: 61–65.Google Scholar
  38. Levine, B. A., and Williams, R.J. P., 1982. The chemistry of calcium ion and its biological relevance, in The Role of Calcium in Biological Systems (L.J. Anghileri and A.M. Tuffet-Anghileri, eds.), Vol. 1, CRC Press, Boca Raton, FL, pp. 3–26.Google Scholar
  39. Lind, M.D., Lee, B., and Hoard, J.L., 1965. Structure and bonding in a ten-coordinate lanthanum(III) chelate of ethylenediaminetetraacetic acid, J. Am. Chem. Soc. 87: 1611–1612.CrossRefGoogle Scholar
  40. Long, J.R., 1985. Lanthanides in organic synthesis, Aldrich. Acta 18:87–93.Google Scholar
  41. Martin, R. B., 1983. Structural chemistry of calcium: lanthanides as probes, in Calcium in Biology (T.G. Spiro, ed.), Wiley, New York, pp. 237–270.Google Scholar
  42. Miller, T. L., and Senkfor, S.I., 1982. Spectrofluorometric determination of calcium and lanthanide elements in dilute solution, Anal. Chem. 54:2022–2025.CrossRefGoogle Scholar
  43. Moeller, T., 1973. The lanthanides, in Comprehensive Inorganic Chemistry (J.C. Bailar, H.J. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, eds.), Vol. 4, Pergamon Press, Oxford, pp. 1–97.Google Scholar
  44. Moeller, T., and Kremers, H. E., 1944. Electrometric study of the precipitation of trivalent hydrous rare earth oxides or hydroxides, J. Phys. Chem. 48:395–406.CrossRefGoogle Scholar
  45. Moeller, T., Martin, D.F., Thompson, L.C., Ferrus, R., Feistel, G.R., and Randall, W. J., 1965. The coordination chemistry of yttrium and the rare earth metal ions, Chem. Rev. 65:1–50.CrossRefGoogle Scholar
  46. Morris, L.R., 1976. Thermochemical properties of yttrium, lanthanum and the lanthanide elements and ions, Chem. Rev. 76:827–841.CrossRefGoogle Scholar
  47. Munshi, K., Chrivastava, S., and Dey, A., 1968. Chromogenic behavior of eriochrome cyanide R.C. in the spectrophotometric determination of scandium, yttrium and lanthanum, J. Ind. Chem. Soc. 45:817–820.Google Scholar
  48. Nieboer, E., 1975. The lanthanide ions as probes in biological systems, Struct. Bonding 22: 1–47.CrossRefGoogle Scholar
  49. O’Laughlin, J.W., 1979. Chemical spectrophotometric and Polarographic metals, in Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 341–358.Google Scholar
  50. O’Laughlin, J.W., and Jensen, D. F., 1970. Spectrophotometric determination of the lantha-nides with chlorophosphoazo III, Talanta 17:329–332.CrossRefGoogle Scholar
  51. Opie, E.L., and Lavin, G.I., 1946. Localization of ribonucleic acid in the cytoplasm of liver cells, J. Exp. Med. 84:107–112.CrossRefPubMedCentralGoogle Scholar
  52. Paneth, F., 1913. Colloidal structure of radioactive substances, Kolloid Z. 13:297–305.CrossRefGoogle Scholar
  53. Phillips, C.S.G., and Williams, R.J.P., 1966. Inorganic Chemistry, Vol. 2, Oxford University Press, Oxford, Chapter 21.Google Scholar
  54. Reilley, C.N., Schmid, R.W., and Lamson, D.W., 1958. Chelometric titrations of metalions with Potentiometric endpoint detection with ethylenedinitrilotetraacetic acid, Anal. Chem. 30:953–957.CrossRefGoogle Scholar
  55. Rhee, M.J., Horrocks, W.DeW., and Kosow, D.P., 1984. Laser-induced lanthanide luminescence as a probe of metal ion-binding sites of human factor Xa, J. Biol. Chem. 259:7404–7408.PubMedGoogle Scholar
  56. Richardson, C.E., and Behnke, W. D., 1978. Physical studies of the lanthanide binding to concanavalin A, Biochim. Biophys. Acta 534:267–274.CrossRefPubMedGoogle Scholar
  57. Robinson, J.M., and Karnovsky, M. J., 1983. Ultrastructural localization of 5’-nucleotidase in guinea pig neutrophils based upon the use of cerium as capturing agent, J. Histochem. Cytochem. 31:1190–1196.CrossRefPubMedGoogle Scholar
  58. Rordorf, B. F., and Kearns, D. R., 1976. Effect of europium(III) on the thermal denaturation and cleavage of transfer ribonucleic acids, Biopolymers 15:1491–1504.CrossRefPubMedGoogle Scholar
  59. Rübsamen, H., Hess, G.P., Eldefrawi, A.T., and Eldefrawi, M.E., 1976. Interaction between calcium and ligand-binding sites of the purified acetylcholine receptor studied by use of a fluorescent lanthanide, Biochem. Biophys. Res. Commun. 68:56–62.CrossRefPubMedGoogle Scholar
  60. Ryabchikov, D.I., and Ryabukhin, V. A., 1970. Analytical Chemistry of Yttrium and the Lanthanide Elements (translated by A. Aladjen), Ann Arbor-Humphrey Science Publishers, Ann Arbor, MI, and London.Google Scholar
  61. Schatzki, P. F., and Newsome, A., 1975. Neutralized lanthanum solution: a largely non-colloidal ultrastructural tracer, Stain Technol. 50:171–178.PubMedGoogle Scholar
  62. Schubert, J., and Conn, E.E., 1949. Radiocolloidal behavior of some fission products, Nucleonics 4:2–11.PubMedGoogle Scholar
  63. Schweitzer, G.K., and Jackson, M., 1952a. Radiocolloids, J. Chem. Educ. 29:513–522.CrossRefGoogle Scholar
  64. Schweitzer, G. K., and Jackson, M., 1952b. Studies in low concentration chemistry. I. The radiocolloidal properties of lanthanum-140, J. Am. Chem. Soc. 74:4178–4182.CrossRefGoogle Scholar
  65. Schweitzer, G.K., and Scott, H.E., 1955. Low concentration chemistry X. Further observations on yttrium, J. Am. Chem. Soc. 77:2753–2757.CrossRefGoogle Scholar
  66. Schweitzer, G.K., Stein, B.R., and Jackson, W. M., 1953. Studies in low concentration chemistry. III. The radiocolloidal properties of yttrium-90, J. Am. Chem. Soc. 75: 793–795.CrossRefGoogle Scholar
  67. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A 32:751–767.CrossRefGoogle Scholar
  68. Sherry, A. D., Au-Young, S., and Cottam, G. L., 1978. Fluorescence properties of terbiumalkaline phosphatase, Arch. Biochem. Biophys. 189:277–282.CrossRefPubMedGoogle Scholar
  69. Short, M. T., and Osmand, A. P., 1983. Luminescence energy transfer studies of C-reactive protein. Binding of terbium(III) ions in C-reactive protein, Immunol. Commun. 12: 291–300.PubMedGoogle Scholar
  70. Sihvonen, M. L., 1972. Accumulation of yttrium and lanthanoids in human and rat tissues as shown by mass spectrometric analysis and some experiments with rats, Ann. Acad. Sci. Fenn. 168A: l–56.Google Scholar
  71. Silber, H. B., 1974. A model to describe binding differences between calcium and the lanthanides in biological systems, FEBS Lett. 41:303–306.CrossRefPubMedGoogle Scholar
  72. Sinha, S. P., 1966. Complexes of the Rare Earths, Pergamon Press, New York.Google Scholar
  73. Smolka, G.E., Birnbaum, E.R., and Darnall, D.W., 1971. Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilisα-amylase, Biochemistry 10:4556–4561.CrossRefPubMedGoogle Scholar
  74. Spedding, F. H., and Daane, A. H., 1961. The Rare Earths, Wiley, New York.Google Scholar
  75. Spedding, F. H., Pikal, M. J., and Ayers, B. O., 1966. Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25°, J. Phys. Chem. 70:2440–2449.CrossRefGoogle Scholar
  76. Stefanini, S., Chiancone, E., Antonini, E., and Finazzi-Agro, A., 1983. Binding of terbium to apoferritin: a fluorescence study, Arch. Biochem. Biophys. 222:430–434.CrossRefPubMedGoogle Scholar
  77. Stephens, E.N., and Grishan, C. M., 1979. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase, Biochemistry 18:4876–4885.CrossRefPubMedGoogle Scholar
  78. Taylor, S.R., 1979. Trace element analysis of rare earth elements by spark source mass spectrometry, in Handbook on the Physics and Chemistry of Rare Earths (K. A. Gschneidner and L. Eyring, eds.), Vol. 4, North-Holland, Amsterdam, pp. 359–376.Google Scholar
  79. Tew, W.P., 1977. Use of coulombic interactions of the lanthanide series to identify two classes of Ca2+ binding sites in mitochondria, Biochem. Biophys. Res. Commun. 78: 624–630.CrossRefPubMedGoogle Scholar
  80. Triggle, C. R., and Triggle, D. J., 1976. An analysis of the action of cations of the lanthanide series on the mechanical responses of guinea pig ileal longitudinal muscle, J. Physiol. 254:39–54.CrossRefPubMedCentralPubMedGoogle Scholar
  81. Vallee, B.L., and Williams, R.J.P., 1968. Enzyme action: views derived from metalloenzyme studies, Chem. Brit. 4:397–402.Google Scholar
  82. Van Loon, J.C., Galbraith, J.H., and Aarden, H. M., 1971. The determination of yttrium, europium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium in minerals by atomic absorption spectrophotometry, Analyst 96:47–50.CrossRefGoogle Scholar
  83. Vickery, R.C., 1953. Chemistry of the Lanthanons, Butterworths, London.Google Scholar
  84. Williams, P. F., and Turtle, J.R., 1984. Terbium, a fluorescent probe for insulin receptor binding. Evidence for a conformational change in the receptor protein due to insulin binding, Diabetes 33:1106–1111.CrossRefPubMedGoogle Scholar
  85. Williams, R.J.P., 1970. The biochemistry of sodium, potassium, magnesium and calcium, Quart. Rev. 24:331–365.CrossRefGoogle Scholar
  86. Williams, R.J.P., 1979. Cation and proton interactions with proteins and membranes, Biochem. Soc. Trans. 7:481–509.PubMedGoogle Scholar
  87. Withey, R.J., 1969. Lanthanum ion catalysis of nucleophilic displacement reactions of monoesters of methyl phosphonic acid, Can. J. Chem. 47:4383–4387.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. H. Evans
    • 1
  1. 1.The Ferguson LaboratoryUniversity of PittsburghPittsburghUSA

Personalised recommendations