Advertisement

Analog Models for Information Storage and Transmission in Physiological Systems

  • Stanford R. Ovshinsky
  • Iris M. Ovshinsky
Part of the Institute for Amorphous Studies Series book series (IASS)

Abstract

In this paper we wish to examine in a qualitative way the problem of encoding information in atomic structures with, effectively, a high signal-to-noise ratio. How can such information be retained as memory and in what forms can it be detected and used? These are great unsolved problems of biology and their solution would also be of real value in electronic technology.

Keywords

Amorphous Film Dielectric Breakdown High Resistance State Memory Action Amorphous Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schroedinger, What is Life?, p. 69. Macmillan, New York (1947).Google Scholar
  2. 2.
    F. Morin, G. LaMarche and S.R. Ovshinsky, Laval Medical 26, 3 (1958).Google Scholar
  3. 3.
    J.D. Conney, Control Engineering 5, 82 (1958).Google Scholar
  4. 4.
    J.D. Conney, Control Engineering 6, 121 (1959).Google Scholar
  5. 5.
    L. Young, Anodic Oxide Films, p. 147. Academic Press, New York (1961).Google Scholar
  6. 6.
    S.R. Ovshinsky, The Physical Base of Intelligence-Model Studies, presented at Detroit Physiological Society, Dec. 17, 1959.Google Scholar
  7. 7.
    A. Hoffer and H. Osmond, The Hallucinogens, p. 520. Academic Press, New York (1967).Google Scholar
  8. 8.
    J.G. Simmons and R.R. Verderber, Proc. Roy. Soc. A 301, 77 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Ovshinsky, unpublished data (1958).Google Scholar
  10. 10.
    S.R. Ovshinsky, Symmetrical Current Controlling Device, U.S. Patent No. 3,271,591.Google Scholar
  11. 11.
    Automation 10, 45 (1963).Google Scholar
  12. 12.
    M.P. Southworth, Control Engineering 11, 69 (1964).Google Scholar
  13. 13.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    S.R. Ovshinsky, J. Non-Cryst. Solids 2, 99 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    H. Fritzsche, IBM J. Res. Develop. 13, 515 (1969).Google Scholar
  16. 16.
    H. Fritzsche and S.R. Ovshinsky, J. Non-Cryst. Solids 4, 464 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    S.R. Ovshinsky, in Bull. Acad. Sci. USSR 9, 91 (1967).Google Scholar
  18. 18.
    H. Fritzsche and S.R. Ovshinsky, J. Non-Cryst. Solids 2, 148 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    J. Feinleib and S.R. Ovshinsky, J. Non-Cryst. Solids 4, 564 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Evans, J.H. Helbers and S.R. Ovshinsky, J. Non-Cryst. Solids 2, 334 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    O.A. Vermilyea, J. Electrochem. Soc. 102, 207 (1955).CrossRefGoogle Scholar
  22. 22.
    C.H. Sie, J. Non-Cryst. Solids 4, 548 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    H.K. Henisch, Scientific American 221, 30 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Hill and J.V. Howarth, Proc. Roy. Soc. B/149, 167 (1958).ADSGoogle Scholar
  25. 25.
    I. Singer and I. Tasaki, in Biological Membranes (D. Chapman, ed.) p. 347. Academic Press, New York (1968).Google Scholar
  26. 26.
    M.H. Cohen, H. Fritzsche and S.R. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Stanford R. Ovshinsky
    • 1
  • Iris M. Ovshinsky
    • 1
  1. 1.Energy Conversion Devices, Inc.TroyUSA

Personalised recommendations