Reversible Structural Transformations in Amorphous Semiconductors for Memory and Logic

  • S. R. Ovshinsky
  • H. Fritzsche
Part of the Institute for Amorphous Studies Series book series (IASS)


ORDER-DISORDER transformations such as ordering of magnetic or ferroelectric domains are used in many information storage devices. The structural transformation of amorphous semiconductors from the amorphous to a more ordered state can be used for the same purpose if the structure transformation can be achieved fast and reversibly.1 Amorphous semiconductors have then the advantage over other information storage devices in that they can be cheaply produced and easily shaped in many different configurations. Furthermore, for semiconductors the difference between the physical properties of the amorphous and the crystalline state is particularly large. This enables one to retrieve and read the binary information, stored in the form of the structural state, with good signal to noise ratio despite extensive miniaturization.


Current Pulse Memory Switch Amorphous Semiconductor Laser Beam Intensity Binary Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. Ovshinsky: Phys. Rev. Letters, 1968, vol. 21, p. 1450ADSCrossRefGoogle Scholar
  2. 1a.
    Proc. of 1968 Elec. Comp. Conf., Wash., D. C, p. 313.Google Scholar
  3. 2.
    Many recent reports on this subject as well as earlier references can be found in the Proceedings of two conferences, “Semiconductor Effects in Amorphous Solids”, New York, May 1969, and “Intl. Conf. on Amorphous and Liquid Semiconductors”, Cambridge, England, Sept. 1969, published, respectively, as vol. 2 and 4 of the J. Non-Cryst. Sol., 1970.Google Scholar
  4. 3.
    D. Turnbull and M. H. Cohen: in Modern Aspects of the Vitreous State, J. D. Mackenzie, ed., vol. 1, p. 38, Butterworth & Co., Ltd., London, 1960Google Scholar
  5. 3a.
    D. Turn-bull: Phys. Non-Cryst. Sol., Proc. Intl. Conf., p. 41, North-Holland, Delft, 1965.Google Scholar
  6. 4.
    H. Fritzsche and S. R. Ovshinsky: J. Non-Cryst. Sol., 1970, vol. 2, p. 148ADSCrossRefGoogle Scholar
  7. 4a.
    H. Fritzsche: IBM J. Res. and Dev., 1969, vol. 13, p. 515CrossRefGoogle Scholar
  8. 4b.
    E. A. Fagen and H. Fritzsche: J. Non-Cryst. Sol., 1970, vol. 2, p. 170.ADSCrossRefGoogle Scholar
  9. 5.
    A. Bienenstock, F. Betts, and S. R. Ovshinsky: J. Non-Cryst. Sol., 1970, vol. 2, p. 347.ADSCrossRefGoogle Scholar
  10. 6.
    J. Feinleib and S. R. Ovshinsky: J. Non-Cryst. Sol., 1970, vol. 4, p. 564.ADSCrossRefGoogle Scholar
  11. 7.
    J. Stuke: J. Non-Crsyt. Sol., 1970, vol. 4, p. 1.ADSCrossRefGoogle Scholar
  12. 8.
    J. Feinleib, J. de Neufville, S. C. Moss, and S. R. Ovshinsky: Appl Phys. Letters (in print).Google Scholar
  13. 9.
    J. Feinleib, J. de Neufville, and S. C. Moss: Bull. Am. Phys. Soc. II, 1970, vol. 15, p. 245.Google Scholar
  14. 10.
    E. J. Evans, J. H. Helbers, and S. R. Ovshinsky: J. Non-Cryst. Sol., 1970, vol. 2, p. 334.ADSCrossRefGoogle Scholar
  15. 11.
    The threshold switch is characterized in several articles in J.Non-Cryst. Sol., 1970, vol. 2. See also H. K. Henisch: Sci. Ann., 1969, vol. 221, p. 30.Google Scholar
  16. 12.
    J. Dresner and G. B. Stringfellow: J. Phys. Chem. Solids, 1968, vol. 29, p. 303.ADSCrossRefGoogle Scholar
  17. 13.
    I. A. Paribok-Aleksandrovich: Soviet Phys. Solid State, 1970, vol. 11, p. 1631.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. R. Ovshinsky
    • 1
  • H. Fritzsche
    • 2
  1. 1.Energy Conversion Devices, Inc.TroyUSA
  2. 2.James Franck InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations