Superconductivity at 155 K

  • S. R. Ovshinsky
  • R. T. Young
  • D. D. Allred
  • G. DeMaggio
  • G. A. Van der Leeden
Part of the Institute for Amorphous Studies Series book series (IASS)


The accomplishment of high-temperature superconductivity is of immense scientific and technological importance. Several critical transition-temperature barriers have recently been breached since the long-standing record temperature of 23.2 K for Nb3Ge was exceeded. The most important milestones were the announcement of T c ≈ 30 K in lanthanum barium copper oxide by Bed-norz and Müller,1 whose work was based upon materials developed by Michel and Raveau,2 and the work of Chu, Wu, and others,3 based upon the replacement of lanthanum by yttrium, which resulted in superconductivity at temperatures of approximately 95 K.


Average Resis Average Resistivity Small Volume Fraction Initial Cool Flux Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    C Michel and B. Raveau, J. Solid State Chem. 43, 73 (1982)ADSCrossRefGoogle Scholar
  3. 2a.
    *****C Michel and B. Raveau, J. Provost, F. Studer, C. Michel, and B. Raveau, Synth. Met. 4, 157 (1981).Google Scholar
  4. 3.
    M. K. Wu, J. R. Ashburn, C. J. Tong, P. H. Hor, R. L. Wong, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  5. 3a.
    P. H. Hor, L. Gao, R. L. Meng, Z. J. Huang, Y. O. Wang, K. Forster, J. Vassiliow, and C. W. Chu, Phys. Rev. Lett. 58, 911 (1987).Google Scholar
  6. 4.
    A. M. Saxena, J. E. Crow, and M. Strongin, Solid State Commun. 14,799 (1974).ADSCrossRefGoogle Scholar
  7. 5.
    H. Sadate-Akhavi, J. T. Chen, A. M. Kadin, J. E. Keem, and S. R. Ovshinsky, Solid State Commun. 50, 975 (1984).ADSCrossRefGoogle Scholar
  8. 6.
    J. T. Chen, L. E. Wenger, C. J. McEwan, and E. M. Lo-gothetis, Phys. Rev. Lett. 58, 1972 (1987).ADSCrossRefGoogle Scholar
  9. 7.
    See, for example, A. R. Moodenbaugh, M. Suenaga, T. Asano, R. N. Shelton, H. C. Ku, R. W. McCallum, and P. Klavins, Phys. Rev. Lett. 58, 1885 (1987)ADSCrossRefGoogle Scholar
  10. 7a.
    P. H. Hor, R. L. Meng, Y. Q. Wang, L. Gao, Z. J. Huang, J. Bechtold, K. Forster and C. W. Chu, Phys. Rev. Lett. 58, 1891 (1987).ADSCrossRefGoogle Scholar
  11. 8.
    S. R. Ovshinsky, in Physical Properties of Amorphous Materials, edited by D. Adler, B. B. Schwartz, and M. C. Steele (Plenum, New York, 1985)Google Scholar
  12. 8a.
    ****S. R. Ovshinsky, Rev. Roum. Phys. 26, 893 (1981)Google Scholar
  13. 8b.
    ****S. R. Ovshinsky, J. Phys. (Paris), Colloq. 42, C4–1095-C4–1104 (1981)CrossRefGoogle Scholar
  14. 8c.
    ****S. R. Ovshinsky, J. Non-Cryst. Solids 32, 17 (1979).ADSCrossRefGoogle Scholar
  15. 9.
    S. R. Ovshinsky, to be published.Google Scholar
  16. 10.
    Data taken from G. K. White and S. B. Woods, Phil. Trans. Roy. Soc. London, Ser. A 251, 272 (1959).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. R. Ovshinsky
    • 1
  • R. T. Young
    • 1
  • D. D. Allred
    • 1
  • G. DeMaggio
    • 1
  • G. A. Van der Leeden
    • 1
  1. 1.Energy Conversion Devices, Inc.TroyUSA

Personalised recommendations