Advertisement

Superconducting Properties of Sputtered Mo-C Films with Columnar Microstructure

  • J. Wood
  • J. E. Keem
  • J. T. Chen
  • A. M. Kadin
  • R. W. Burkhardt
  • S. R. Ovshinsky
Part of the Institute for Amorphous Studies Series book series (IASS)

Abstract

It has been evident for some time that a fine microstructure on the order of the superconducting coherence length (typically of order 100Å in relevant materials) is useful in optimizing critical currents and fields in technological superconductors. In the present paper, we discuss the superconducting properties of sputtered Mo-C films having nonequilibrium columnar microstructure on this scale. Some of the samples exhibit behavior in large critical fields that compares very favorably with commercial superconducting wire. We also present some preliminary data on multilayered films based on Mo-C, which also exhibit outstanding high-field behavior.

Keywords

Critical Temperature Critical Field Columnar Growth Parallel Magnetic Field Columnar Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Toth, E. Rudy, J. Johnston and E.R. Parker, J. Phys. Chem. Solids 26, 517 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    R.H. Willens and E. Buehler, Appl. Phys. Lett. 7, 25 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    W. Krauss and C. Politis, in Superconductivity in d- and f-band metals 1982. ed. by W. Buckel and W. Weber, Kernforschungszentrum Karlsruhe 1982, p. 439.Google Scholar
  4. 4.
    E.K. Storms, The Refractory Carbides, Chapter VIII, Academic Press (1967).Google Scholar
  5. 5.
    W. Wagner, D. Ast and J.R. Gavaler, J. Appl. Phys. 45, 465 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ashkin and J.R. Gavaler, J. Appl. Phys. 49, 2449 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Gavaler, A.T. Santhanam, A.I. Braginski, M. Ashkin and M.A. Janocko, IEEE Trans. MAG-17, 573 (1981).ADSGoogle Scholar
  8. 8.
    M. Ashkin, J.R. Gavaler, J. Greggi and M. Decroux, J. Appl. Phys. 55, 1044 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    Trademark for Dupont Polyimide film.Google Scholar
  10. 10.
    H. Sadate-Akhavi, J.T. Chen, A.M. Kadin, J.E. Keem and S.R. Ovshinsky, Solid State Commun. 50, 975 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    R. Koepke and G. Bergmann, Solid State Commun. 19, 435 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    F.P. Missell, S. Frota-Pessoa, J. Wood, J. Tyler and J.E. Keem, Phys. Rev. B27, 1596 (1983).ADSGoogle Scholar
  13. 13.
    M. Ikeba, Y. Muto, S. Ikeda, H. Fujimori and K. Suzuki, Physica 107B, 387 (1981).Google Scholar
  14. 14.
    N.R. Werthamer, E. Helfand and P.C. Hohenberg, Phys. Rev. 147, 295 (1966).ADSCrossRefGoogle Scholar
  15. 15.
    B.W. Roberts, J. Phys. Chem. Ref. Data 5, 743 (1976); NBS Technical Note 983 (1978).CrossRefGoogle Scholar
  16. 16.
    H. Sadate-Akhavi, J.T. Chen, F.P. Missell and J.E. Keem, Bull. Am. Phys. Soc. 27, 381 (1982), and additional unpublished data.Google Scholar
  17. 17.
    L.E. Toth and J. Zbasnik, Acta Metall. 16, 1177 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Wood
    • 1
  • J. E. Keem
    • 1
  • J. T. Chen
    • 2
  • A. M. Kadin
    • 1
  • R. W. Burkhardt
    • 1
  • S. R. Ovshinsky
    • 1
  1. 1.Energy Conversion Devices, Inc.TroyUSA
  2. 2.Department of PhysicsWayne State UniversityDetroitUSA

Personalised recommendations