The Nature of Intermediate Range Order in Si:F:H:(P) Alloy Systems

  • R. Tsu
  • S. S. Chao
  • S. R. Ovshinsky
  • G. J. Jan
  • F. H. Pollak
Part of the Institute for Amorphous Studies Series book series (IASS)


Previously, we have reported, in heavily As- or P-doped Si:F:H alloy systems, the appearance of a Raman peak lying intermediate between 522 cm-1 for c-Si and 480 cm-1 for amorphous Si.(1,2) Whenever such Raman peak is observed, electrolyte-electro-reflectance (EtR) peaks appear around 2 eV, together with those associated with c-Si at 3.4 eV and 4.5 eV. We have explained these observations in terms of an intermediate range order or a “microcrystalline phase.” Now we have found similar observations in moderately P-doped samples. On glass substrates EER may be observed when the volume fraction of crystallinity has passed 0.16, the critical density, ρ cr, in percolation processes. (3,4) However, on stainless steel substrates, EER has been observed for ρ cr < 0.16, indicating that unlike conductivity, EtR requires only the existence of relatively sharp electronic density of states.


Raman Peak High Electric Field Percolation Process Stainless Steel Substrate Brooklyn College 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tsu, M. Izu, S.R. Ovshinsky and F.H. Pollak, Solid State Coinm. 36, 817 (1980).ADSCrossRefGoogle Scholar
  2. 2a.
    R. Isu, M. Izu, V. Cannella, S.R. Ovshinsky, G.J. Jan and F.H. Pollak, Proc. 15th Int. Conf. Semicond., Kyoto, 1980Google Scholar
  3. 2b.
    R. Isu, M. Izu, V. Cannella, S.R. Ovshinsky, G.J. Jan and F.H. Pollak, J. Phys. Soc. Japan 49, Suppl A, 1249 (1980).Google Scholar
  4. 3.
    “Critical Density in Percolation Process: Volume Fraction of Crystallinity,” R. Tsu, J. Gonzalez-Hernandez, S.C. tee, S.S. Chao and K. Tanaka, to be published.Google Scholar
  5. 4.
    H. Scher and R. Zallen, J. Chem. Phys. 53, 3/59 (1970).Google Scholar
  6. 5.
    S.C. Moss and J.F. Graczyk, Phys. Rev. Lett. 23, 1167 (1969).ADSCrossRefGoogle Scholar
  7. 6.
    Z. Iqbal, A.P. Webb and S. Veprek, Appl. Phys. Lett. 36, 163 (1980).ADSCrossRefGoogle Scholar
  8. 7.
    A.M. Goodman, Inst. Phys. Conf. Ser. 43, 80b (1979).Google Scholar
  9. 8.
    R. Tsu, M. Izu, S.R. Ovshinsky and F.H. Pollak, Bull Am. Phys. Soc. 25, 295 (1980).Google Scholar
  10. 9.
    K. Tanaka, K. Nakagawa, A. Matsuda, M. Matsumura, H. Yamamoto, S. Yamasaki, H. Okushi and S. Iizima, Proc. 12th Conf. Solid State Devices, 1989, Tokyo.Google Scholar
  11. 10.
    T. Hamasaki, H. Kurata, M. Hirose and Y. Osaka, Appl. Phys. Lett. 37, 1084 (1980).ADSCrossRefGoogle Scholar
  12. 11.
    M.H. Brodsky, M.A. Frisch, J.F. Ziegler and W.A. Lanford, Appl. Phys. Lett. 30, 561 (1977).ADSCrossRefGoogle Scholar
  13. 12.
    G. Dolling, Elastic Scattering of Neutron, Symp. Chalk River 2, 37 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. Tsu
    • 1
  • S. S. Chao
    • 1
  • S. R. Ovshinsky
    • 1
  • G. J. Jan
    • 2
  • F. H. Pollak
    • 2
  1. 1.Energy Conversion Device, Inc.TroyUSA
  2. 2.Brooklyn College of CUNYBrooklynUSA

Personalised recommendations