Advertisement

Threshold Switching in Chalcogenide-Glass Thin Films

  • D. Adler
  • M. S. Shur
  • M. Silver
  • S. R. Ovshinsky
Part of the Institute for Amorphous Studies Series book series (IASS)

Abstract

The application of sufficiently high electric fields to any material eventually results in deviations from linearity in the observed current-voltage I(V) characteristic. There are two general classes of explanations for such non-Ohmic effects— thermal and electronic. Thermal effects arise because the electrons accelerated by the field always emit phonons in an attempt to return to equilibrium. Electronic effects are due to changes in the response of the charged carriers to high applied fields. In general, both effects must be considered in any quantitative analysis, and the two can produce a coupled response ofter called “electrothermal.” The use of the terminology electrothermal encompasses predominantly thermal and predominantly electronic processes as well as all intermediate cases, and therefore should not prejudice the casual observer into concluding that both effects are necessarily important. In a discussion of the physical mechanism in a particular sample, the major parameters controlling its operation must be identified and separated out from the less significant features.

Keywords

Critical Field Switching Transition Chalcogenide Glass Threshold Switching Chalcogen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    For comprehensive reviews of the extensive work done prior to 1971, see D. Adler, Amorphous Semiconductors (CRC Press, Cleveland, 1971), p. 96Google Scholar
  3. 2a.
    H. Fritzsche, in Amorphous and Liquid Semiconductors, edited by J. Tauc (Plenum, New York, 1974), p. 313. For a more recent reviewCrossRefGoogle Scholar
  4. 2b.
    D. Adler, H.K. Henisch, and N.F. Mott, Rev. Mod. Phys. 50, 209 (1978).ADSCrossRefGoogle Scholar
  5. 3.
    D. Adler, in Amorphous and Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 695Google Scholar
  6. 3a.
    H. Fritzsche and S.R. Ovshinsky, J. Non-Cryst. Solids 2, 393 (1970).ADSCrossRefGoogle Scholar
  7. 4.
    M.P. Shaw, H.L. Grubin, and I.J. Gastman, IEEE Trans. Educ. ED-20, 169 (1973).Google Scholar
  8. 5.
    B.K. Ridley, Proc. Phys. Soc. 82, 954 (1963)ADSCrossRefGoogle Scholar
  9. 5a.
    H.K. Rockstad, and M.P. Shaw, IEEE Trans. Educ. ED-20, 593 (1973).Google Scholar
  10. 6.
    K.E. Petersen and D. Adler, J. Appl. Phys. 47, 256 (1976).ADSCrossRefGoogle Scholar
  11. 7.
    R.W. Pryor and H.K. Henisch, J. Non-Cryst. Solids 7, 181 (1972).ADSCrossRefGoogle Scholar
  12. 8.
    M.P. Shaw, S.H. Holmberg, and S.A. Kostylev, Phys. Rev. Lett. 31, 542 (1973).ADSCrossRefGoogle Scholar
  13. 9.
    W.D. Buckley and S.H. Holmberg, Solid State Electron. 18, 127 (1975).ADSCrossRefGoogle Scholar
  14. 10.
    D.K. Reinhard, D. Adler, and F.O. Arntz, J. Appl. Phys. 47, 1560 (1976).ADSCrossRefGoogle Scholar
  15. 11.
    E.J. Yoffa and D. Adler, Phys. Rev. B 15, 2311 (1977).ADSGoogle Scholar
  16. 12.
    B.P. Mathur, Ph.D. thesis, MIT, 1973.Google Scholar
  17. 13.
    F.A. Padovani and R. Stratton, Solid State Electron. 9, 695 (1966).ADSCrossRefGoogle Scholar
  18. 14.
    K. Subhani, M.S. Shur, M.P. Shaw, and D. Adler, in Amorphous and Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 712.Google Scholar
  19. 15.
    D.K. Reinhard, F.O. Arntz, and D. Adler, Appl. Phys. Lett. 23, 521 (1973).ADSCrossRefGoogle Scholar
  20. 16.
    H.K. Henisch, W.R. Smith, and W. Wihl, in Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974), p. 567.Google Scholar
  21. 17.
    K. Homma, Appl. Phys. Lett. 18, 198 (1971).ADSCrossRefGoogle Scholar
  22. 18.
    M.P. Shaw, S.C. Moss, S.A. Kostylev, and L.H. Slack, Appl. Phys. Lett. 22, 114 (1973).ADSCrossRefGoogle Scholar
  23. 19.
    M.P. Shaw and I.J. Gastman, Appl. Phys. Lett. 19, 243 (1971)ADSCrossRefGoogle Scholar
  24. 19a.
    M.P. Shaw and I.J. Gastman, J. Non-Cryst. Solids 8–10, 999 (1972).CrossRefGoogle Scholar
  25. 20.
    R.R. Shanks, J. Non-Cryst. Solids 2, 505 (1970).ADSCrossRefGoogle Scholar
  26. 21.
    K.E. Petersen, D. Adler, and M.P. Shaw, IEEE Trans. Educ. ED-23, 471 (1976).ADSGoogle Scholar
  27. 22.
    K.E. Petersen and D. Adler, Appl. Phys. Lett. 25, 211 (1974).ADSCrossRefGoogle Scholar
  28. 23.
    R.C. Frye, D. Adler, and M.P. Shaw, J. Appl. Phys. 50 (1979).Google Scholar
  29. 24.
    P.J. Walsh, S. Ishioka, and D. Adler, Appl. Phys. Lett. 33, 593 (1978).ADSCrossRefGoogle Scholar
  30. 25.
    K.B. Ma, J. Non-Cryst. Solids 24, 345 (1977).ADSCrossRefGoogle Scholar
  31. 26.
    D. Adler and L.P. Flora, in Amorphous & Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974), p. 1407.Google Scholar
  32. 27.
    A.J. Hughes, P.A. Holland, and A.H. Lettington, J. Non-Cryst. Solids 17, 89 (1975).ADSCrossRefGoogle Scholar
  33. 28.
    K.E. Petersen and D. Adler in Amorphous & Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 707Google Scholar
  34. 28a.
    K.E. Petersen and D. Adler, J. Appl. Phys. 50, C.I.C.L. (1979).Google Scholar
  35. 29.
    K. Homma, H.K. Henisch, and S.R. Ovshinsky, J. Non-Cryst. Solids, 35/36, 1105 (1980).CrossRefGoogle Scholar
  36. 30.
    J.J. Hauser, F.J. DiSalvo, Jr., and R.S. Hutton, Philos. Mag. 35, 1557 (1977).ADSCrossRefGoogle Scholar
  37. 31.
    P.W. Anderson, Phys. Rev. Lett. 34, 953 (1975).Google Scholar
  38. 32.
    R.A. Street and N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975).ADSCrossRefGoogle Scholar
  39. 33.
    S.G. Bishop, U. Strom, and P.C. Taylor, Phys. Rev. Lett. 34, 1346 (1975).ADSCrossRefGoogle Scholar
  40. 34.
    M. Kastner, Phys. Rev. Lett. 28, 355 (1972).ADSCrossRefGoogle Scholar
  41. 35.
    D. Adler, Sci. Am. 236, 36 (1977)ADSCrossRefGoogle Scholar
  42. 35a.
    K.L. Ngai, T.L. Reinecke, and E.N. Economou, Phys. Rev. B 17, 790 (1978); D. Adler and M. Kastner, (unpublished).ADSGoogle Scholar
  43. 36.
    S.R. Ovshinsky and K. Sapru, in Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974), p. 447.Google Scholar
  44. 37.
    S.R. Ovshinsky, Phys. Rev. Lett. 36, 1469 (1976).ADSCrossRefGoogle Scholar
  45. 38.
    M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).ADSCrossRefGoogle Scholar
  46. 39.
    D. Adler and E.J. Yoffa, Can. J. Chem. 55, 1920 (1977).CrossRefGoogle Scholar
  47. 40.
    D. Adler, J. Non-Cryst. Solids 35/36, 819 (1980)Google Scholar
  48. 40a.
    M. Kastner and H. Fritzsche, Philos. Mag. 37B, 199 (1978).Google Scholar
  49. 41.
    M. Abkowitz and D.M. Pai, Phys. Rev. Lett. 38, 1412 (1977).ADSCrossRefGoogle Scholar
  50. 42.
    D. Adler and E.J. Yoffa, Phys. Rev. Lett. 36, 1197 (1976).ADSCrossRefGoogle Scholar
  51. 43.
    A.M. Barnett, IBM J. Res. Dev. 13, 522 (1969).CrossRefGoogle Scholar
  52. 44.
    I. Melngailis and A.G. Milnes, J. Appl. Phys. 33, 995 (1962).ADSCrossRefGoogle Scholar
  53. 45.
    B.L. Gelmont and M.S. Shur, J. Phys. D 6, 842 (1973).ADSGoogle Scholar
  54. 46.
    A. Blicher, Thyristor Physics (Springer-Verlag, New York, 1976).CrossRefGoogle Scholar
  55. 47.
    I.V. Varlamov and V.V. Osipov, Sov. Phys.-Semicond. 3, 893 (1970)Google Scholar
  56. 47a.
    I.V. Varlamov, V.V. Osipov, and E.A. Poltoratskii, (lap)ibid, Sov. Phys.-Semicond. 3, (1970) 978.Google Scholar
  57. 48.
    See, for example, M.P. Shaw, H.L. Grubin, and P.R. Solomon, The Gunn-Hilsum Effect (Academic, New York, 1979).Google Scholar
  58. 49.
    P.N. Butcher, Rep. Prog. Phys. 30, 97 (1967)ADSCrossRefGoogle Scholar
  59. 49a.
    B.W. Knight and G.A. Peterson, Phys. Rev. 155, 393 (1967).ADSCrossRefGoogle Scholar
  60. 50.
    D.L. Thomas and J.C. Male, J. Non-Cryst. Solids 8–10, 522 (1972).CrossRefGoogle Scholar
  61. 51.
    C. Popescu and N. Croitoru, J. Non-Cryst. Solids 8–10, 531 (1972).CrossRefGoogle Scholar
  62. 52.
    T. Kaplan and D. Adler, J. Non-Cryst. Solids 8–10, 538 (1972).CrossRefGoogle Scholar
  63. 53.
    D.N. Knoll and M.H. Cohen, J. Non-Cryst. Solids 8–10, 544 (1972).Google Scholar
  64. 54.
    S.H. Holmberg and M.P. Shaw in Amorphous & Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974), p. 687.Google Scholar
  65. 55.
    D.K. Reinhard, D. Adler, and F.O. Arntz in Amorphous & Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974), p. 745.Google Scholar
  66. 56.
    H. Wey, Phys. Rev. B 13, 3495 (1976).ADSGoogle Scholar
  67. 57.
    W.H. Weber and G.W. Ford, Solid State Electron 13, 1333 (1970).ADSCrossRefGoogle Scholar
  68. 58.
    S.R. Ovshinsky, Proc. 6th Int. conf. Amorphous & Liquid Semiconductors, edited by B.T. Kolomeits (Nauka, Leningrad, U.S.S.R., 1976), p. 426.Google Scholar
  69. 59.
    M.P. Shaw, Handbook of Semiconductors (North-Hollnad, Amsterdam, 1979), Vol. 4, Chap. 1.Google Scholar
  70. 60.
    J.B. Gunn, Proc. Phys. Soc. 69, 781 (1956).ADSCrossRefGoogle Scholar
  71. 60a.
    J.B. Gunn, Proc. Phys. Soc. 8-B, 781 (1956).ADSGoogle Scholar
  72. 61.
    M.C. Steele, H. Ando, and M.A. Lampert, J. Phys. Soc. Jpn. 17, 1729 (1962).ADSCrossRefGoogle Scholar
  73. 62.
    H.K. Henisch, Sci. Am. 221, 2 (1969).CrossRefGoogle Scholar
  74. 63.
    H.K. Henisch, E.A. Fagen, and S.R. Ovshinsky, J. Non-Cryst. Solids 4, 538 (1979).CrossRefGoogle Scholar
  75. 64.
    N.F. Mott, Philos. Mag. 26, 1015 (1972);ADSCrossRefGoogle Scholar
  76. 64a.
    N.F. Mott, Philos. Mag. 32, 159 (1975).ADSCrossRefGoogle Scholar
  77. 65.
    I. Lucas, J. Non-Cryst. Solids 6, 136 (1971).ADSCrossRefGoogle Scholar
  78. 66.
    H. Haberland, Solid State Electron. 13, 207 (1970).ADSCrossRefGoogle Scholar
  79. 67.
    P.J. Walsh and G.C. Vezzoli, in Amorphous & Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London 1974), p. 1391.Google Scholar
  80. 68.
    K.W. Boer and R. Haislip, Phys. Rev. Lett. 29, 230 (1970).ADSCrossRefGoogle Scholar
  81. 69.
    W. van Roosbroeck and H.C. Casey, Jr., Phys. Rev. B 5, 2154 (1972).ADSGoogle Scholar
  82. 70.
    C. Popescu and H.K. Henisch, Phys. Rev. B 11, 1563 (1975).ADSGoogle Scholar
  83. 71.
    B.D. Rodgers, C.B. Thomas, and H.S. Reehal, Philos, Mag. 31, 1013 (1976).ADSCrossRefGoogle Scholar
  84. 72.
    S.H. Lee, H.K. Henisch, and W.D. Burgess, J. Non-Cryst. Solids 8–10, 422 (1972).CrossRefGoogle Scholar
  85. 73.
    R. Callarotti and P. Schmidt, in Amorphous & Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 717.Google Scholar
  86. 74.
    D. Allsopp, M.J. Thompson, and J. Allison, in Amorphous & Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 732.Google Scholar
  87. 75.
    J.M. Mackowski, J.P. Thomas, P. Kumurdjian, and J. Tousset, in Amorphous & Liquid Semiconductors, edited by W.E. Spear, (C.I.C.L., Edinburgh, Scotland, 1977), p. 570.Google Scholar
  88. 76.
    S.R. Ovshinsky, Proc. 4th Int. Congress for Reprographie and Information, Hanover, Germany, 1975 (unpublished).Google Scholar
  89. 77.
    This argument was developed with the assistance of R. Flasck.Google Scholar
  90. 78.
    M.J. Thomson, J. Allison, and S.R. Jones, in Amorphous & Liquid Semiconductors, edited by W.E. Spear (C.I.C.L., Edinburgh, Scotland, 1977), p. 727.Google Scholar
  91. 79.
    W.E. Spear and P.G. LeComber, Solid State Commun. 17, 1193 (1975).ADSCrossRefGoogle Scholar
  92. 80.
    W. Paul, A.J. Lewis, G.A.N. Connell, and T.D. Moustakas, Solid State Commun. 20, 969 (1976).ADSCrossRefGoogle Scholar
  93. 81.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1968).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. Adler
    • 1
  • M. S. Shur
    • 2
  • M. Silver
    • 3
  • S. R. Ovshinsky
    • 4
  1. 1.Department of Electrical Engineering and Computer Science, and Center for Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Physics and AstronomyUniversity of North CarolinaChapel HillUSA
  4. 4.Energy Conversion Devices, Inc.TroyUSA

Personalised recommendations