Advertisement

Experimental Studies of Phase Separation in Reaction Injection Molded (RIM) Polyurethanes

  • R. E. Camargo
  • C. W. Macosko
  • M. V. Tirrell
  • S. T. Wellinghoff
Part of the Polymer Science and Technology book series (POLS, volume 18)

Abstract

Reaction injection molding or RIM is the high speed production of polymer parts directly from low viscosity reactants injected into a mold. In contrast to thermoplastic injection molding, where the part solidified upon cooling, in RIM the shape is set by fast (insitu) polymerization. The reaction leading to the formation of the polymer can be initiated by mixing or by heat transfer.1 For the mixing activated process two highly reactive monomers or pre-polymers, in stoichiometric ratios, are brought into intimate contact by impingement mixing. The thermally activated RIM materials, on the other hand, have to be initiated by an increase in monomer temperature.1

Keywords

Phase Separation Hard Segment Soft Segment Carbonyl Band Hard Segment Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Castro, V. M. Gonzalez and C. W. Macosko, Soc. Plast. Eng. Tech. Papers, 27, 363 (1981).Google Scholar
  2. 2.
    M. Tirrell, L. J. Lee and C. W. Macosko, A.C.S. Symp. Series, 104, 149 (1979).CrossRefGoogle Scholar
  3. 3.
    G. D. Lewis, Paper #18, A.C.S. Rubber Div., 119th Meeting, Minneapolis, June, 1981.Google Scholar
  4. 4.
    L. J. Lee, Rubber Chem. and Tech., 53, 542 (1980).CrossRefGoogle Scholar
  5. 5.
    A. Noshay and J. E. McGrath, “Block Copolymers: Overview and Critical Survey,” Academic Press, NY, 1977, Ch. 7.Google Scholar
  6. 6.
    I. R. Fridman, E. L. Thomas, L. J. Lee and C. W. Macosko, Polymer, 21, 393 (1980).CrossRefGoogle Scholar
  7. 7.
    A. L. Chang, R. M. Briber, E. L. Thomas, R. J. Zdrahala and F. E. Critchfield, Polymer, submitted for publication (1981).Google Scholar
  8. 8.
    J. M. Castro, F. Lopez-Serrano, R. E. Camargo, C. W. Macosko and M. Tirrell, J. Appl. Polym. Sci., 26, 2067 (1981).CrossRefGoogle Scholar
  9. 9.
    R. E. Camargo, C. W. Macosko and M. Tirrell, Paper #17, A.C.S. Rubber Div., 119th Meeting, Minneapolis, June, 1981.Google Scholar
  10. 10.
    S. L. Hager, T. B. MacRury, R. M. Gerkin and F. E. Critchfield, Polymer Preprints, 21 (2), 298 (1980).Google Scholar
  11. 11.
    V. W. Srichatrapimuk and S. L. Cooper, J. Macromol. Sci., Phys., B15, 267 (1978).Google Scholar
  12. 12.
    S. L. Cooper and A. V. Tobolsky, J. Appl. Polym. Sci., 10, 1837 (1966).CrossRefGoogle Scholar
  13. 13.
    T. Kajiyama and W. J. MacKnight, Macromolecules, 2, 254 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    F. H. Huh and S. L. Cooper, Polym. Eng. Sci., 11, 369 (1971).CrossRefGoogle Scholar
  15. 15.
    J. L. Illinger, N. S. Schneider and F. E. Karasz, Polym. Eng. Sci., 12, 25 (1972).CrossRefGoogle Scholar
  16. 16.
    C. G. Seefried, J. V. Koleske and F. E. Critchfield, J. Appl. Polym. Sci., 19, 2493 (1975);CrossRefGoogle Scholar
  17. 16a.
  18. 16b.
  19. 17.
    G. A. Senich and W. J. MacKnight, Adv. in Chem. Series, 176, 97 (1978).Google Scholar
  20. 18.
    R. J. Zdrahala, R. M. Gerkin, S. L. Hager and F. E. Critchfield, J. Appl. Polym. Sci., 24, 2041 (1979).CrossRefGoogle Scholar
  21. 19.
    R. J. Zdrahala, S. L. Hager, R. M. Gerkin and F. E. Critchfield, J. Elastom. and Plast., 12, 225 (1980).CrossRefGoogle Scholar
  22. 20.
    R. Bonart, J. Macromol. Sci., Phys., B2, 115 (1968).Google Scholar
  23. 21.
    R. Bonart, L. Morbitzer and G. Hentze, J. Macromol. Sci., Phys., B3, 337 (1969).Google Scholar
  24. 22.
    R. Bonart, L. Morbitzer and E. H. Muller, J. Macromol. Sci., Phys., B9, 447 (1974).Google Scholar
  25. 23.
    N. S. Schneider, C. R. Desper, J. R. Illinger and A. O. King, J. Macromol. Sci., Phys., B11, 527 (1975).Google Scholar
  26. 24.
    J. Blackwell and K. H. Gardner, Polymer, 20, 13 (1979).CrossRefGoogle Scholar
  27. 25.
    J. Blackwell, M. R. Najarajan and T. Hoitnik, Polymer Preprints, 21 (2), 303 (1980).Google Scholar
  28. 26.
    Y. M. Boyarchuk, L. Y. Rapport, V. N. Nikitin and N. P. Apukhtina, Polym. Sci., USSR, 7, 859 (1965).CrossRefGoogle Scholar
  29. 27.
    T. Tanaka, T. Yokoyama and Y. Yamaguchi, J. Polym. Sci., A-1, 6, 2137 (1968).CrossRefGoogle Scholar
  30. 28.
    R. W. Seymour, G. M. Estes and S. L. Cooper, Macromolecules, 3, 579 (1970).ADSCrossRefGoogle Scholar
  31. 29.
    W. J. MacKnight and M. Yang, J. Polym. Sci., C42, 817 (1973).Google Scholar
  32. 30.
    J. C. West and S. L. Cooper, J. Polym. Sci., C60, 127 (1977).Google Scholar
  33. 31.
    C. S. Paik Sung and N. S. Schneider, Macromolecules, 8, 68 (1975).ADSCrossRefGoogle Scholar
  34. 32.
    C. S. Paik Sung and N. S. Schneider, Macromolecules, 10, 452 (1977).ADSCrossRefGoogle Scholar
  35. 33.
    G. A. Senich and W. J. MacKnight, Macromolecules, 13, 106 (1980).ADSCrossRefGoogle Scholar
  36. 34.
    T. Yokoyama, Adv. in Urethane Sci. and Tech., 6, 1 (1978).Google Scholar
  37. 35.
    L. J. Lee and C. W. Macosko, Soc. Plast. Eng. Tech. Papers, 24, 151 (1978); U. S. Patent 4,189,070 (1979).Google Scholar
  38. 36. (a).
    P. R. Griffiths, “Chemical Infrared Fourier Transform Spectroscopy,” Wiley Interscience, New York, 1975;Google Scholar
  39. 36. (b).
    P. R. Griffiths, C. T. Foskett and R. Curbelo, Appl. Spectrosc. Rev., 6, 31 (1972).ADSCrossRefGoogle Scholar
  40. 37.
    J. L. Koenig, Appl. Spectrosc., 29, 293 (1975).ADSCrossRefGoogle Scholar
  41. 38.
    J. O. Lephardt and G. Vilcins, Appl. Spectrosc, 29, 221 (1975);ADSCrossRefGoogle Scholar
  42. 38a.
    H. W. Siesler, Polymer Preprints, 21 (1), 163 (1980).Google Scholar
  43. 39.
    L. J. Lee and C. W. Macosko, Int. J. Heat. Mass. Transfer, 23, 1479 (1980); ibid,CrossRefGoogle Scholar
  44. 39a.
    L. J. Lee and C. W. Macosko, Soc. Plast. Eng. Tech. Papers, 24, 155 (1978).Google Scholar
  45. 40.
    J. M. Castro and C. W. Macosko, A.I.Ch.I. J., accepted for publication (1981).Google Scholar
  46. 41.
    P. Kolodziej, M.S. Thesis, Dept. of Chemical Engineering and Materials Science, University of Minnesota, 1980.Google Scholar
  47. 42.
    P. Kolodziej, C. W. Macosko and W. E. Ranz, Polym. Eng. Sci., submitted (1981).Google Scholar
  48. 43.
    J. M. Castro and C. W. Macosko, unpublished results.Google Scholar
  49. 44.
    E. G. Richter and C. W. Macosko, Polym. Eng. Sci., 18, 1012 (1978).CrossRefGoogle Scholar
  50. 45.
    G. C. Pimentel and A. L. McClellan, “The Hydrogen Bond,” W. H. Freeman and Co., San Francisco, 1960.Google Scholar
  51. 46.
    O. Olabisi, L. M. Robeson and M. T. Shaw, “Polymer-Polymer Miscibility,” Academic Press, New York, 1979.Google Scholar
  52. 47.
    J. W. Cahn, Trans. Metall. Soc, AIME, 242, 166 (1968).Google Scholar
  53. 48.
    S. Wellinghoff, J. Shaw and E. Baer, Macromolecules, 12, 932 (1979).ADSCrossRefGoogle Scholar
  54. 49.
    J. Gilmer, N. Goldstein and R. S. Stein, Am. Phys. Soc. Bulletin, 25, (3), 353 (1980).Google Scholar
  55. 50.
    T. Nishi, T. T. Wang and T. K. Kwei, Macromolecules, 8, 227 (1975).ADSCrossRefGoogle Scholar
  56. 51.
    F. Lopez-Serrano, J. M. Castro, C. W. Macosko and M. Tirrell, Polymer, 21, 263 (1980).CrossRefGoogle Scholar
  57. 52.
    R. E. Camargo, unpublished data (1981).Google Scholar
  58. 53.
    S. Krimm and Y. Abe, Proc. Nat. Acad. Sci. USA, 69, 2788 (1972).ADSCrossRefGoogle Scholar
  59. 54.
    J. Vincent-Geisse, Spectrochim. Acta, 24A, 1 (1968).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. E. Camargo
    • 1
  • C. W. Macosko
    • 1
  • M. V. Tirrell
    • 1
  • S. T. Wellinghoff
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations