Studies on the Role of dam Methylation at the Escherichia Coli Chromosome Replication Origin (oriC)

  • Patrick Forterre
  • Fatima-Zahra Squali
  • Patrick Hughes
  • Masamichi Kohiyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


The 245 bp replication origin of Escherichia coli. (oriC) contains 11 GATC whereas only one is expected at random (1). 8 of these GATC are conserved in the ori consensus sequence of the Enterobacteriacae (2). The regions around oriC are also GATC rich. This observation raises the question, why so much GATC in and around oriC ? A current view relates this phenomenon to the systematic adenine methylation of the GATC in Escherichia coli (dam methylation) (3). One hypothesis is that dam methylation is required for the functionning of oriC. For instance, dam methylation could help melting of DNA at oriC since A(CH3)-T base pairs are less stable than A-T ones (4). Indeed dam methylation lowers the calculated DNA duplex stability profile of oriC (4). In contradiction with the above hypothesis, a dam - mutant without residual methylation at oriC grows well (5). Nevertheless, since a dam - polA - double mutant is lethal (6), one can imagine that new DNA initiation mechanism dependent on DNA polymerase I occurs in dam - mutants. A second hypothesis to explain the abundance of GATC in and around oriC is that GATC tend to concentrate mismatch repair enzymes in that region, enhancing conservation of their DNA sequence (1).


Mismatch Repair Plasmid Replication GATC Site GATC Sequence Residual Methylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zyskind, J.W. and Smith, D.W. (1980) Proc. Natl. Acad. Sci. USA, 77, 2460.PubMedCrossRefGoogle Scholar
  2. 2.
    Zyskind, J.W., Cleary, J.M., Brusilow, W.S.A., Harding, N. and Shmith, D.W. (1983) Proc. Natl. Acad. Sci. USA, 80, 1164.PubMedCrossRefGoogle Scholar
  3. 3.
    Razin, A. and Friedman, J. (1982) in: Prog. Nucleic Acids Res. and Mol. Biol. 25, 33.Google Scholar
  4. 4.
    Kohiyama, M., Jacq, A. and Reiss, C. (1982) in: New approaches in eukaryotic DNA replication, Plenum press ed., New York, London, 235.Google Scholar
  5. 5.
    Szyf, M., Gruenbaum, Y., Ureli-Shoval, S. and Razin, A. (1982) Nucl. Acids Res. 10, 7247.PubMedCrossRefGoogle Scholar
  6. 6.
    Marinus, M.G. and Morris, N.R. (1974) J. Mol. Biol. 85, 309.PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner, R.J. and Meselson, M. (1976) Proc. Natl. Acad. Sci. USA, 73, 4135.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuller, R.S., Kaguni, J.M. and Kornberg, A. (1981) Proc. Natl. Acad. Sci. USA, 78, 7370.PubMedCrossRefGoogle Scholar
  9. 9.
    Messer, W., Heiman, B., Meijer, M. and Hall, S. (1980) Symp. Molec. Cell Biol. 19, 161.Google Scholar
  10. 10.
    Lacks, S. and Greenberg, B. (1977) J. Mol. Biol. 114, 153.PubMedCrossRefGoogle Scholar
  11. 11.
    Geier, G.E. and Modrick, P. (1979) J. Biol. Chem. 254, 1408.PubMedGoogle Scholar
  12. 12.
    Tabata, S., Oka, A., Sugimoto, K., Takanami, M., Yasuda, S. and Hirota, Y. (1983) Nucl. Acids Res. 11, 2617.PubMedCrossRefGoogle Scholar
  13. 13.
    Hall, R.S. (1971) in: The modified nucleosides in nucleic acids, Columbia university press ed., New-York, London, 281.Google Scholar
  14. 14.
    Dybvig, K., Swinton, D., Maniloff, J. and Hattman, S. (1982) J. Bact. 151, 1420.PubMedGoogle Scholar
  15. 15.
    Dreiseikelmann, B. and Wackernagel, W. (1981) J. Bact. 147, 259.PubMedGoogle Scholar
  16. 16.
    Brooks, J.E., Blumenthal, R.M. and Gingeras, T.R. (1983) Nucl. Acids Res. 11, 837.PubMedCrossRefGoogle Scholar
  17. 17.
    Gelinas, R.E., Myers, P.A. and Roberts, R.J. (1977) J. Mol. Biol. 114, 169.PubMedCrossRefGoogle Scholar
  18. 18.
    Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolf, R.S., Balch, W.E., Tanner, R.S., Magrum, L.J., Zablen, L.B., Blakemore, R., Gupta, R., Bonem, L., Lewis, B.J., Stalh, D.A., Lvehrsen, K.R., Chen, K.N. and Woese, C.R. (1980) Science, 209, 457.PubMedCrossRefGoogle Scholar
  19. 19.
    Buchanan, R.E. and Gibbons, N.E. (1974) Bergey’s manual of determinative bacteriology, Williams and Wiltems eds., Baltimore, ed 8.Google Scholar
  20. 20.
    Lacks, S.A., Dunn, J.J. and Greenberg, B. (1982) Cell 31, 327.PubMedCrossRefGoogle Scholar
  21. 21.
    Roberts, R.J. (1983) Nucl. Acids Res. 11, rl35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Patrick Forterre
    • 1
  • Fatima-Zahra Squali
    • 1
  • Patrick Hughes
    • 1
  • Masamichi Kohiyama
    • 1
  1. 1.Institut Jacques MonodUniversité Paris VIIParis Cedex 05France

Personalised recommendations