Escherichia coli DNA Gyrase

  • Elisha Orr
  • Heinz Lother
  • Rudi Lurz
  • Elmar Wahle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


The role of DNA gyrase -a type II topoisomerase- had been speculated about for a long time before the discovery of the enzyme. In 1963, J. Cairns (1) pointed out that the Escherichia coli chromosome is a closed circular double strand DNA molecule. It has consequently become apparent that a replication machinery which has to unwind the two strands would generate a positive swivel in front of the advancing replication fork. A topoisomerase type II could, therefore, release this tension. The second problem relating to DNA gyrase was the observation that coumarins, e.g. novobiocin, and drugs like nalidixic acid inhibit the B and the A subunits of gyrase respectively. Previous studies have already shown that these drugs also block DNA replication in vivo. It is therefore not too surprising that the role of this enzyme seemed clear when it was discovered by M. Geliert and Colleagues at the N.I.H. (2). This picture however, turned out to be more complicated when further studies revealed that the two families of drugs inhibit many other cellular processes, all dependent on the DNA template. DNA gyrase has now become a most promiscuous protein, participating in different molecular pathways such as replication, transcription, transposition and recombination (for review see 3).


Cell Free Extract Nalidixic Acid Oxolinic Acid Solid Phase Radioimmunoassay Gyrase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cairns, J. (1963) J. Mol. Biol. 6, 308.CrossRefGoogle Scholar
  2. 2.
    Geliert, M., Mizuuchi, K., O’Dea, M.H. and Nash, H.A. (1976) Proc. Natl. Acad. Sci. USA 73, 3872.CrossRefGoogle Scholar
  3. 3.
    Geliert, M. (1981) Ann. Rev. Biochem. 50, 879.CrossRefGoogle Scholar
  4. 4.
    Lockson, D. and Morris, D.R. (1983) Nucl. Acids Res. 11, 2999.CrossRefGoogle Scholar
  5. 5.
    Orr, E., Fairweather, N.F., Holland, I.B. and Pritchard, R.H. (1979) Mol. Gen. Genet. 177, 103.PubMedCrossRefGoogle Scholar
  6. 6.
    Orr, E. and Staudenbauer, W.L. (1981) Mol. Gen. Genet. 181, 52.PubMedCrossRefGoogle Scholar
  7. 7.
    Kreuzer, K.N. and Cozzarelli, N.R. (1979) J. Bacteriol. 140, 424.PubMedGoogle Scholar
  8. 8.
    Filutowicz, M. and Jonczyk, P. (1983) Mol. Gen. Genet. 191, 282.PubMedCrossRefGoogle Scholar
  9. 9.
    Pritchard, R.H. and Zaritsky, A. (1970) Nature 226, 126.PubMedCrossRefGoogle Scholar
  10. 10.
    Fuller, R.S., Kaguni, J.M. and Kornberg, A. (1981) Proc. Natl. Acad. Sci. USA 78, 7370.PubMedCrossRefGoogle Scholar
  11. 11.
    Pratt, J.M., Boulnois, G.J., Darby, V., Orr, E., Wahle, E. and Holland, I.B. (1981) Nucl. Acids Res. 9, 4459.PubMedCrossRefGoogle Scholar
  12. 12.
    Higgins, N.P., Peebles, C.L., Sugino, A. and Cozzarelli, N.R. (1978) Proc. Natl. Acad. Sci. USA 75, 1773.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown, P.O., Peebles, C.L. and Cozzarelli, N.R. (1979) Proc. Natl. Acad. Sci. USA 76, 6110.PubMedCrossRefGoogle Scholar
  14. 14.
    Menzel, R. and Geliert, M. (1983) Cell 34, 105.PubMedCrossRefGoogle Scholar
  15. 15.
    Gellert, M., Fisher, L.M. and O’Dea, M.H. (1979) Proc. Natl. Acad. Sci. USA 76, 6289.PubMedCrossRefGoogle Scholar
  16. 16.
    Sugino, A., Higgins, N.P., Brown, P.O., Peebles, C.L. and Cozzarelli, N.R. (1978) Proc. Natl. Acad. Sci. USA 75, 4838.PubMedCrossRefGoogle Scholar
  17. 17.
    Higgins, N.P. and Cozzarelli, N.R. (1982) Nucl. Acids Res. 10, 6833.PubMedCrossRefGoogle Scholar
  18. 18.
    Staudenbauer, W.L. and Orr, E. (1981) Nucl. Acids Res. 9, 3589.PubMedCrossRefGoogle Scholar
  19. 19.
    Lother, H., Bunk, H.J., Morelli, C., Heimann, B., Chakraborty, T. and Messer, W. (1981) ICN-UCLA symp. Mol. and Cell. Biol. 22, 57.Google Scholar
  20. 20.
    Meyer, M., Beck, E., Hansen, F., Bergmans, H.E.C., Messer, W., von Meyenburg, K. and Schaller, H. (1979) Proc. Natl. Acad. Sci. USA 76, 580.CrossRefGoogle Scholar
  21. 21.
    Towbin, H., Staehelin, T. and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350.PubMedCrossRefGoogle Scholar
  22. 22.
    Micheel, B., Karsten, U. and Friebach, H. (1981) J. Immunol. Meth. 46, 41.CrossRefGoogle Scholar
  23. 23.
    Kano, J., Miyashita, T., Nakamura, H., Kuraki, K., Nagata, A. and Imamoto, F. (1981) 13, 173.Google Scholar
  24. 24.
    Liu, L.F., Liu, C.C. and Alberts, B.M. (1979) Nature 281, 456.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Elisha Orr
    • 1
  • Heinz Lother
    • 1
    • 2
  • Rudi Lurz
    • 1
    • 2
  • Elmar Wahle
    • 1
    • 3
  1. 1.Department of GeneticsLeicester UniversityLeicesterUK
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlin 33Germany
  3. 3.Zoologisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations