Advertisement

Paradoxes of in Situ Polyacrylamide Gel Assays for DNA Polymerase Priming

  • Geoffrey R. Banks
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

The DNA polymerase-α from Drosophila melanogaster embryos is now one of the most extensively characterised eukaryotic multisubunit polymerases because it can be isolated in high yields in an intact, yet highly purified form. It has proved to be amenable to detailed biochemical studies of its subunit structure and subunit contributions to the overall DNA synthesis reaction, primer and template requirements, processivity, cellular functions and immunological properties (1–10). The holoenzyme utilises not only gapped duplex DNA as a primer-template system, but also pre-DNA and pre-RNA primed single-stranded circular phage DNAs (6, 10). Furthermore, it will synthesise DNA on an unpreprimed single DNA strand in the presence of both rNTPs and dNTPs because it also catalyses the synthesis of short RNA and RNA-DNA oligonucleotides which prime subsequent DNA chain elongation (8, 9). Whether this composite reaction is related to Okazaki fragment initiation and synthesis in vivo remains to be determined.

Keywords

Glycerol Gradient Template Requirement Fragment Initiation Test Tube Assay Page Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brakel, C. L. and Blumenthal, A. B. (1977) Biochemistry, 16, 3137.PubMedCrossRefGoogle Scholar
  2. 2.
    Banks, G. R., Boezi, J. A. and Lehman, I. R. (1979) J. Biol. Chem. 254, 9886.PubMedGoogle Scholar
  3. 3.
    Villani, G., Sauer, B. and Lehman, I. R. (1980) J. Biol. Chem. 255, 9479.PubMedGoogle Scholar
  4. 4.
    Kaguni, L. S., Rossignol, J-M., Conaway, R. C. and Lehman, I. R. (1983) Proc. Natl. Acad. Sci. USA 80, 2221.PubMedCrossRefGoogle Scholar
  5. 5.
    Sauer, B. and Lehman, I. R. (1982) J. Biol. Chem. 257, 12394.PubMedGoogle Scholar
  6. 6.
    Kaguni, L. S. and Clayton, D. A. (1982) Proc. Natl. Acad. Sci. USA 79, 983.PubMedCrossRefGoogle Scholar
  7. 7.
    Sugino, A. and Nakayama, K. (1980) Proc. Natl. Acad. Sci. USA 77, 7049.PubMedCrossRefGoogle Scholar
  8. 8.
    Conaway, R. C. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 2523.PubMedCrossRefGoogle Scholar
  9. 9.
    Conaway, R. C. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 4585.PubMedCrossRefGoogle Scholar
  10. 10.
    Villani, G., Fay, P. J., Bambara, R. A. and Lehman, I. R. (1981) J. Biol. Chem. 256, 8202.PubMedGoogle Scholar
  11. 11.
    Hübscher, U., Spanos, A., Albert, W., Grummt, F. and Banks, G. R. (1981) Proc. Natl. Acad. Sci. USA 78, 6771.PubMedCrossRefGoogle Scholar
  12. 12.
    Spanos, A., Sedgwick, S., Yarranton, G. T., Hübscher, U. and Banks, G. R. (1981) Nucleic Acids Res. 8, 1825.CrossRefGoogle Scholar
  13. 13.
    Kaguni, L. S., Rossignol, J-M., Conaway, R. C., Banks, G. R. and Lehman, I. R. (1983) J. Biol. Chem. 258, 9037.PubMedGoogle Scholar
  14. 14.
    Romberg, A. (1980) in: “DNA Replication”, W. H. Freeman and Co., San Francisco.Google Scholar
  15. 15.
    Berg, P., Fancher, H. and Chamberlin, M. (1963) in:“Informational Macromolecules” (Vogel, J. H., Bryson, B. and Lampen, J. O., eds.), p. 467, Academic Press, New York.Google Scholar
  16. 16.
    van de Sande, J. H., Loewen, P. C. and Khorana, H. G. (1972) J. Biol. Chem. 247, 6140.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Geoffrey R. Banks
    • 1
  1. 1.National Institute for Medical ResearchLondonUK

Personalised recommendations