Advertisement

De Novo DNA Synthesis by Yeast DNA Polymerase I Associated with Primase Activity

  • P. Plevani
  • G. Magni
  • M. Foiani
  • L. M. S. Chang
  • G. Badaracco
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

DNA synthesis at the replication fork is carried out continuously on the leading-strand and discontinuously on the lagging-strand (1). The nascent DNA chains (Okazaki fragments) on the lagging-strand are synthesized by elongation of RNA initiators. Primase, the product of dnaG gene, synthesizes short ribo- or mixed ribodeoxyribo-oligonucleotide which are elongated by DNA polymerase III holoenzyme during the replication of the Escherichia coli chromosome and priming activities are also involved in the replication of several bacteriophage genomes (1). A similar activity has been implicated in the initiation of Okazaki fragments during the semidiscontinuous replication of polyoma DNA in intact nuclei (2), and some very recent reports have suggested that DNA primase activity may be associated with DNA polymerase a from eukaryotic organisms (3–6). The budding yeast Saccharomyces cervisiae contains two non-mitochondrial DNA polymerases, named DNA polymerase I and II (7–9). DNA polymerase I is the major enzyme and has biochemical properties similar to those of eukaryotic DNA polymerase a. DNA polymerase II resembles pro-karyotic DNA polymerases because of the presence of an associated proofreading 3’-exonuclease.

Keywords

Replication Fork High Molecular Weight Form Okazaki Fragment Primase Activity dnaG Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kornberg, A. (1980) “DNA replication”, W. H. Freeman and Co., San Francisco.Google Scholar
  2. 2.
    Reichard, P. and Eliasson, R. (1978) Cold Spring Harbor Symp. Quant. Biol. 43, 271.CrossRefGoogle Scholar
  3. 3.
    Conaway, R. D. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 2523.PubMedCrossRefGoogle Scholar
  4. 4.
    Yagura, T., Kozu, T. and Seno, T. (1982) J. Biol. Chem. 257, 11121.PubMedGoogle Scholar
  5. 5.
    Shioda, M., Nelson, E. M., Bayne, M. L. and Benbow, R. M. (1982) Proc. Natl. Acad. Sci. USA 79, 7209.PubMedCrossRefGoogle Scholar
  6. 6.
    Hübscher, U. (1983) EMBO J. 2, 133.PubMedGoogle Scholar
  7. 7.
    Chang, L. M. S. (1977) J. Biol. Chem. 252, 1873.PubMedGoogle Scholar
  8. 8.
    Wintersberger, W. (1978) Eur. J. Biochem. 84, 167.PubMedCrossRefGoogle Scholar
  9. 9.
    Badaracco, G., Capucci, L., Plevani, P. and Chang, L. M. S. J. Biol. Chem., in press.Google Scholar
  10. 10.
    Plevani, P. and Chang, L. M. S. (1977) Proc. Natl. Acad. Sci. USA 74, 1937.PubMedCrossRefGoogle Scholar
  11. 11.
    Plevani, P. and Chang, L. M. S. (1978) Biochemistry 17, 2530.PubMedCrossRefGoogle Scholar
  12. 12.
    Towbin, H., Staehlin, T. and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350.PubMedCrossRefGoogle Scholar
  13. 13.
    Spanos, A., Sedgwick, S. G., Yarranton, G. T., Hübscher, U. and Banks, G. R. (1981) Nucleic Acids Res. 9, 1825.PubMedCrossRefGoogle Scholar
  14. 14.
    Conaway, R. C. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 4585.PubMedCrossRefGoogle Scholar
  15. 15.
    Gourlie, B. B. and Pigiet, V. P. (1983) J. Virol. 45, 585.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • P. Plevani
    • 1
  • G. Magni
    • 1
  • M. Foiani
    • 1
  • L. M. S. Chang
    • 2
  • G. Badaracco
    • 1
  1. 1.Sezione di Genetica e Microbiologia, Dipartimento di BiologiaUniversità di MilanoMilanItaly
  2. 2.Department of BiochemistryU.S.U.H.S.BethesdaUSA

Personalised recommendations