Studies on the Initiation of DNA Synthesis in Plant and Animal Cells

  • S. Litvak
  • J. Graveline
  • L. Zourgui
  • P. Carvallo
  • A. Solari
  • H. Aoyama
  • M. Castroviejo
  • L. Tarrago-Litvak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


DNA dependent DNA polymerases (E. C. 2. 7. 7. 7) play a key role in DNA replication by copying with high efficiency and fidelity the appropriate templates. These enzymes are, however, unable to initiate DNA synthesis in the absence of a primer able to provide a free 3’OH starting point (1). Several mechanisms have been described concerning the initiation of DNA synthesis by DNA polymerases. In Figure 1 we show schematically the different possibilities a DNA polymerase can find to start a DNA chain. In normally replicating prokaryotic or eukaryotic cells, DNA synthesis is initiated from short RNA primers synthesized by a unique kind of RNA polymerase called DNA primase (1). Discontinuous DNA synthesis gives raise to the so called Okazaki fragments which are then joined to give the high molecular weight nascent DNA. A very different mechanism is observed in the case of the replication of adenovirus DNA. The adenovirus coded DNA polymerase initiates DNA synthesis from a dCMP residue covalently linked to a 55 Kd protein (see van der Vliet et al., this volume). Parvovirus contain a single stranded DNA genome with a high degree of self complementarity; hairpin structures allow the initiation of DNA synthesis in this system by a cell coded DNA polymerase (see Vos et al., this volume).


Avian Myeloblastosis Virus Wheat Embryo Large Oocyte Enucleated Oocyte Turnip Yellow Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kornberg, A. DNA Replication (and 1982 Supplement), Plenum Press, San Francisco (1980).Google Scholar
  2. 2.
    Litvak, S. and Araya, A. (1982) Trends Biochem. Sci. 7, 361.CrossRefGoogle Scholar
  3. 3.
    Conaway, R. C. and Lehman, I. R. (1982) Proc. Natl. Acad. Sci. USA 79, 2523.PubMedCrossRefGoogle Scholar
  4. 4.
    Yagura, T., Kozo, T. and Seno, T. (1982) J. Biol. Chem. 257, 11121.PubMedGoogle Scholar
  5. 5.
    Hübscher, U. (1983) EMBO J. 2, 133.PubMedGoogle Scholar
  6. 6.
    Castroviejo, M., Tarrago-Litvak, L. and Litvak, S. (1975) Nucleic Acids Res. 2, 2077.PubMedCrossRefGoogle Scholar
  7. 7.
    Castroviejo, M., Tharaud, D., Tarrago-Litvak, L. and Litvak, S. (1979) Biochem. J. 181, 183.PubMedGoogle Scholar
  8. 8.
    Castroviejo, M., Fournier, M., Gatius, M., Gandar, J. C., Labouesse, B. and Litvak, S. (1982) Biochem. Biophys. Res. Comm. 107, 2 94.Google Scholar
  9. 9.
    Pfeiffer, P. and Hohn, T. (1983) Cell 33, 781.PubMedCrossRefGoogle Scholar
  10. 10.
    Christophe, L., Tarrago-Litvak, L., Castroviejo, M. and Litvak, S. (1981) Plant Sience Lett. 21, 181.CrossRefGoogle Scholar
  11. 11.
    Ricard, B., Echeverria, M., Christophe, L. and Litvak, S. (1983) Plant Mol. Biol. 2, 167.CrossRefGoogle Scholar
  12. 12.
    Roeder, R. G. (1976) RNA polymerase, Cold Spring Harbor Laboratory.Google Scholar
  13. 13.
    Shioda, M., Nelson, E. M., Bayne, M. L. and Benbow, R. M. (1982) Proc. Natl. Acad. Sci. USA 79, 7209.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaguni, L. S., Rossignol, J. M., Conaway, R. C. and Lehman, I. R. (1983) Proc. Natl. Acad. Sci. USA 80, 2221.PubMedCrossRefGoogle Scholar
  15. 15.
    Summers, J. and Mason, W. S. (1982) Cell 29, 403.PubMedCrossRefGoogle Scholar
  16. 16.
    Varmus, H. (1982) Science 216, 812.PubMedCrossRefGoogle Scholar
  17. 17.
    Araya, A., Sarin, L. and Litvak, S. (1979) Nucleic Acids Res. 6, 3831.PubMedCrossRefGoogle Scholar
  18. 18.
    Harland, R. M. and Laskey, R. A. Cell 21, 761.Google Scholar
  19. 19.
    Joenje, H. and Benbow, R. M. (1978) J. Biol. Chem. 253, 2640.PubMedGoogle Scholar
  20. 20.
    Zimmermann, W. and Weissbach, A. (1981) Mol. Cell. Biol. 1, 680.PubMedGoogle Scholar
  21. 21.
    Rapaport, E. and Zamecnik, P. C. (1976) Proc. Natl. Acad. Sci. USA 73, 3984.PubMedCrossRefGoogle Scholar
  22. 22.
    Grummt, F., Waltl, G., Jantzen, H. M., Hamprecht, K., Hübscher, U. and Kuenzle, C. C. (1979) Proc. Natl. Acad. Sci. USA 76, 6081.PubMedCrossRefGoogle Scholar
  23. 23.
    Grummt, F. (1978) Proc. Natl. Acad. Sci. USA 75, 371.PubMedCrossRefGoogle Scholar
  24. 24.
    Knopf, K. W., Yamada, M. and Weissbach, A. (1976) Biochemistry 15, 4540.PubMedCrossRefGoogle Scholar
  25. 25.
    Fox, A. M., Breaux, C. B. and Benbow, R. M. (1980) Develop. Biol. 80, 79.PubMedCrossRefGoogle Scholar
  26. 26.
    Philippe, M. and Chevaillier, P. (1980) Biochem. J. 189, 635.PubMedGoogle Scholar
  27. 27.
    Habara, A., Nagano, H. and Mano, Y. (1980) Bioch. Biophys. Acta 608, 287.CrossRefGoogle Scholar
  28. 28.
    Zamecnik, P. C., Rapaport, E. and Baril, E. (1982) Proc. Natl. Acad. Sci. USA 79, 1791.PubMedCrossRefGoogle Scholar
  29. 29.
    Brun, G., Vannier, P., Scovassi, I. and Callen, J. C. (1981) Europ. J. Biochem. 118, 407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • S. Litvak
    • 1
  • J. Graveline
    • 1
  • L. Zourgui
    • 1
  • P. Carvallo
    • 2
  • A. Solari
    • 1
  • H. Aoyama
    • 1
  • M. Castroviejo
    • 1
  • L. Tarrago-Litvak
    • 1
  1. 1.Institut de Biochimie Cellulaire et Neurochimie du CNRSBordeaux cedexFrance
  2. 2.Departamento de Bioquimica, Facultad de MedicinaUniversidad de ChileSantiago 7Chile

Personalised recommendations