Advertisement

How Does SV40 T Antigen Control Initiation of Viral DNA Replication?

  • E. Fanning
  • C. Burger
  • B. Huber
  • U. Markau
  • S. Sperka
  • S. Thompson
  • E. Vakalopoulou
  • B. Vogt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

Simian virus 40 (SV40) large T antigen is a multifunctional protein involved in the regulation of viral transcription and DNA replication in lytically infected monkey cells and in the establishment and maintenance of cell transformation by SV40 (1). T antigen occurs in several different forms which differ biologically and biochemically. T antigen binds specifically to several sites in the origin region of SV40 DNA, acts as an ATPase and associates stably with a transformation- and cell cycle-related cellular phosphoprotein p53 (1). Yet how these properties enable this remarkable protein to fulfill its many varied functions remains unknown. This communication summarizes the biochemical properties of different forms of T antigen from two groups of mutants defective in initiation of SV40 DNA replication, as compared with those of wild-type T antigen. Based on these results, we suggest a possible mechanism for T antigen function in the initiation of SV40 DNA replication and present the results of initial experiments designed to test this model.

Keywords

Tetrameric Form Antigen Function SV40 Origin DNase Footprinting Lead Strand Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rigby, P. W. J. and Lane, D. P. (1983) in: “Advances in Viral Oncology”, Vol. 3, G. Klein, ed., Raven Press, New York.Google Scholar
  2. 2.
    Fanning, E., Nowak, B. and Burger, C. (1981) J. Virol. 37, 92.PubMedGoogle Scholar
  3. 3.
    Fanning, E., Westphal, K.-H., Brauer, D. and Cörlin, D. (1982) EMBO J. 1, 1023.PubMedGoogle Scholar
  4. 4.
    Dorn, A., Brauer, D., Otto, B., Fanning, E. and Knippers, R. (1982) Eur. J. Biochem. 128, 53.PubMedCrossRefGoogle Scholar
  5. 5.
    Dove, W. F., Inokuchi, H. and Stevens, W. F. (1971) in: “The Bacteriophage Lambda”, A. D. Hershey, ed., Cold Spring Harbor Laboratory.Google Scholar
  6. 6.
    Bergsma, D. J., Olive, D. M., Hartzeil, S. W. and Subramanian, K. N. (1982) Proc. Natl. Acad. Sci. USA 79, 381.CrossRefGoogle Scholar
  7. 7.
    Byrne, B. J., Davis, M. S., Yamaguchi, J., Bergsma, D. J. and Subramanian, K. N. (1983) Proc. Natl. Acad. Sci. USA 80, 721.CrossRefGoogle Scholar
  8. 8.
    Baumann, E. A. and Hand, R. (1982) J. Virol. 44, 78.PubMedGoogle Scholar
  9. 9.
    Ghosh, P. K. and Lebowitz, P. (1981) J. Virol. 40, 224.PubMedGoogle Scholar
  10. 10.
    Hansen, U., Tenen, D. G., Livingston, D. M. and Sharp, P. A. (1981) Cell 27, 603.PubMedCrossRefGoogle Scholar
  11. 11.
    Hay, R. T. and DePamphilis, M. L. (1982) Cell 28, 767.PubMedCrossRefGoogle Scholar
  12. 12.
    Gluzman, Y. (1981) Cell 23, 175.PubMedCrossRefGoogle Scholar
  13. 13.
    Burger, C. and Fanning, E. (1983) Virology 126, 19.PubMedCrossRefGoogle Scholar
  14. 14.
    Dörper, T. and Winnacker, E.-L. (1983) Nucl. Acids Res. 11, 2575.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • E. Fanning
    • 1
  • C. Burger
    • 2
  • B. Huber
    • 1
  • U. Markau
    • 1
  • S. Sperka
    • 1
  • S. Thompson
    • 1
  • E. Vakalopoulou
    • 1
  • B. Vogt
    • 1
  1. 1.Institute for BiochemistryMunichGermany
  2. 2.Faculty for BiologyUniversity of ConstanceKonstanzGermany

Personalised recommendations