Advertisement

How Does Rop Work?

  • D. W. Banner
  • R. M. Lacatena
  • L. Castagnoli
  • M. Cornelissen
  • G. Cesareni
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

Plasmids of the ColEl family provide a convenient model system for the investigation of the molecular mechanisms which regulate initiation of DNA replication in Escherichia coli. ColEl replicates in bacteria at a copy number of approximately 15. The observations that this copy number could be increased by mutagenesis and that some of these mutants are complemented in trans by plasmids of the same incompatibility group suggest that ColEl replication is negatively regulated (1–6). An attractive model of the processes of initiation of DNA replication was proposed by Tomizawa and coworkers who were able to reassemble from purified enzymes an in vitro system which can carry out the biochemical steps involved in primer formation and initial deoxyribonucleotide polymerization (3, 7). When origin sequences are incubated in the presence of RNA polymerase, two main transcripts can be identified (Figure 1). The longer one (RNA2) starts from a promoter 550 nucleotides upstream from the replication origin and is believed to form a hybrid with the DNA template in the origin region. This hybrid is processed by RNAseH to yield an RNA molecule of 550 nucleotides which can serve as primer for deoxyribonucleotide polymerization by DNA polymerase I.

Keywords

Replication Origin Origin Region Plasmid Replication European Molecular Biology Laboratory Tetracycline Resistance Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelfand, D. H., Shepard, H. M., O’Farrell, P. H. and Polisky, B. (1978) Proc. Natl. Acad. Sci. USA 75, 5869.PubMedCrossRefGoogle Scholar
  2. 2.
    Conrad, S. E. and Campbell, J. L. (1979) Cell 18, 61.PubMedCrossRefGoogle Scholar
  3. 3.
    Tomizawa, J., Itoh, T., Selzer, G. and Som, T. (1981) Proc. Natl. Acad. Sci. USA 78, 1421.PubMedCrossRefGoogle Scholar
  4. 4.
    Lacatena, R. M. and Cesareni, G. (1981) Nature 294, 623.PubMedCrossRefGoogle Scholar
  5. 5.
    Lacatena, R. M. and Cesareni, G. (1983) J. Mol. Biol. 170, 635.PubMedCrossRefGoogle Scholar
  6. 6.
    Twigg, A. J. and Sherratt, D. (1980) Nature 283, 216.PubMedCrossRefGoogle Scholar
  7. 7.
    Itoh, T. and Tomizawa, J. (1980) Proc. Natl. Acad. Sci. USA 77, 2450.PubMedCrossRefGoogle Scholar
  8. 8.
    Tamm, J. and Polisky, B. (1983) Nucleic Acid Res. 11, 6381.PubMedCrossRefGoogle Scholar
  9. 9.
    Cesareni, G., Muesing, M. A. and Polisky, B. (1982) Proc. Natl. Acad. Sci. USA 79, 6313.PubMedCrossRefGoogle Scholar
  10. 10.
    Lacatena, R. M., Banner, D. W. and Cesareni, G. (1983) in: Mechanism of DNA Replication and Recombination, Cozzarelli, N. R., ed., UCLA Symposia on Molecular and Cellular Biology, Alan R. Liss, Inc., New Series, Vol. X, 327.Google Scholar
  11. 11.
    Som, T. and Tomizawa, J. (1983) Proc. Natl. Acad. Sci. USA 80, 3232.PubMedCrossRefGoogle Scholar
  12. 12.
    Maurer, R., Meyer, B. and Ptashne, M. (1980) J. Mol. Biol. 139, 147.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller, J. H. (1972) Experiments in molecular genetics, Cold Spring Harbor Laboratory, New York.Google Scholar
  14. 14.
    Staudenbauer, W. L. (1976) Molec. Gen. Genet. 145, 273.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. W. Banner
    • 1
  • R. M. Lacatena
    • 1
  • L. Castagnoli
    • 1
  • M. Cornelissen
    • 1
  • G. Cesareni
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergFed. Rep. of Germany

Personalised recommendations