The Genetics of Adeno-Associated Virus

  • Nicholas Muzyczka
  • Richard J. Samulski
  • Paul Hermonat
  • Arun Srivastava
  • Kenneth I. Berns
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)


Adeno-associated virus (AAV) is a defective parvovirus which is absolutely dependent on coinfection with a helper virus for a productive lytic cycle (for a review, see ref. 1). Either adenoviruses or herpes viruses can act as helpers (2–5) . In the absence of a helper virus, AAV efficiently integrates into host cell chromosomes via its inverted terminal repeats (6, 7). Integrated AAV genomes are essentially genetically stable and do not express their genes (8). An interesting feature of AAV biology is the fact that when a cell line that is latently infected with AAV is superinfected with a helper virus, the integrated AAV genome is rescued and proceeds through a normal lytic cycle (6, 8). It is likely that the inverted terminal repeats of AAV are involved in the rescue of the genome as well as its integration, but as yet relatively little is known about these processes. There is substantial evidence, however, to support the idea that the AAV terminal repeat is the origin for DNA replication (1, 9–11) and a reasonable model (1, 9) which describes the mode of AAV DNA replication has been proposed (Figure 1). In the model the terminal repeat, which contains palindromic sequences, acts as a hairpin primer to initiate DNA replication. The hairpin is resolved by cleavage of the parental strand opposite the primer position.


Terminal Repeat Terminal Sequence Restriction Enzyme Analysis Palindromic Sequence Helper Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berns, K.I. and Hauswirth, W.W. (1979) Adv. Virus Res. 25, 407.PubMedCrossRefGoogle Scholar
  2. 2.
    Atchison, R.W., Casto, B.C. and Hammon, W.McD. (1965) Science 194, 754.CrossRefGoogle Scholar
  3. 3.
    Hoggan, M.D., Blacklow, N.R. and Rowe, W.P. (1966) Proc. Natl. Acad. Sci. USA 55, 1457.CrossRefGoogle Scholar
  4. 4.
    Parks, W.P., Melnick, J.L., Rongey, R. and Mayor, H.D. (1967) J. Virol. 1, 171.PubMedGoogle Scholar
  5. 5.
    Buller, R.M.L., Janik, J.E., Sebring, E.D. and Rose, J.A. (1981) J. Virol. 40, 241.PubMedGoogle Scholar
  6. 6.
    Hoggan, M.D., Thomas, G.F. and Johnson, F.B. (1972) Proc. 4th Lepetit Colloq., North-Holland, Amsterdam, 243.Google Scholar
  7. 7.
    Cheung, A.K-M., Hoggan, M.D., Hauswirth, W.W. and Berns, K.I. (1980) J. Virol. 33, 738.Google Scholar
  8. 8.
    Berns, K.I., Cheung, A.K-M., Ostrove, J.M. and Lewis, M. (1982) in: Virus Persistence, Hurison, A.C. and Barby, G.K., eds., Massachusetts, Cambridge University Press, p.p.249.Google Scholar
  9. 9.
    Straus, S.E., Sebring, E. and Rose, J.A. (1976) Proc. Natl. Acad. Sci. USA 73, 742.PubMedCrossRefGoogle Scholar
  10. 10.
    Lusby, E., Fife, K.H. and Berns, K.I. (1980) J. Virol. 34, 402.PubMedGoogle Scholar
  11. 11.
    Hauswirth, W.W. and Berns, K.I. (1977) Virology 79, 488.CrossRefGoogle Scholar
  12. 12.
    Rose, J.A., Berns, K.I., Hoggan, M.D. and Koczot, F.J. (1969) Proc. Natl. Acad. Sci. USA 64, 863.PubMedCrossRefGoogle Scholar
  13. 13.
    Mayor, H.D., Torikai, K., Melnick, J. and Mandel, M. (1969) Science 166, 1280.PubMedCrossRefGoogle Scholar
  14. 14.
    Berns, K.I., Muzyczka, N. and Hauswirth, W.W. (1984) in: Human Viral Diseases, B. Fields et al., eds., Raven Press, New York, in press.Google Scholar
  15. 15.
    Laughlin, C.A., Jones, N. and Carter, B.J. (1982) J. Virol 41, 868.PubMedGoogle Scholar
  16. 16.
    Janik, J.E., Huston, M.M. and Rose, J.A. (1981) Proc. Natl. Acad. Sci. USA 78, 1925.Google Scholar
  17. 17.
    Richardson, W.D. and Westphal, H. (1981) Cell 27, 133.PubMedCrossRefGoogle Scholar
  18. 18.
    Straus, S., Ginsburg, H. and Rose, J.A. (1976) J. Virol. 17, 140.Google Scholar
  19. 19.
    Carter, B., Marcus, C, Laughlin, C. and Ketner, G. (1983) Virology 125, 505.CrossRefGoogle Scholar
  20. 20.
    Samulski, R.J., Berns, K.I., Tan, M., Muzyczka, N. (1982) Proc. Natl. Acad. Sci. USA 79, 2077.PubMedCrossRefGoogle Scholar
  21. 21.
    Samulski, R.J., Srisvastava, A., Berns, K.I. and Muzyczka, N. (1983) Cell 33, 135.PubMedCrossRefGoogle Scholar
  22. 22.
    Berns, K.I. and Kelly, Jr. T.J. (1974) J. Mol. Biol. 82, 267.PubMedCrossRefGoogle Scholar
  23. 23.
    Roizman, B. (1979) Cell 16, 481.PubMedCrossRefGoogle Scholar
  24. 24.
    Lechner, R.L. and Kelly, Jr., T.J. (1977) Cell 12, 1007.PubMedCrossRefGoogle Scholar
  25. 25.
    Stow, N.D. (1982) Nucl. Acids Res. 10, 5105.PubMedCrossRefGoogle Scholar
  26. 26.
    Knipe, D.M., Ruyechan, W.T., Honess, R.W. and Roizman, B. (1979) Proc. Natl. Acad. Sci. USA 76, 4534.PubMedCrossRefGoogle Scholar
  27. 27.
    Srivastava, A., Lusby, E.W. and Berns, K.I. (1983) J. Virol. 45, 555.PubMedGoogle Scholar
  28. 28.
    Hayashi, M. (1978)in: “The Single-Stranded DNA Phages”, Denhardt, D.T., Dressier, D. and Ray, D.S. eds., Cold Spring Harbor Laboratory, pp. 531.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Nicholas Muzyczka
    • 1
  • Richard J. Samulski
    • 1
  • Paul Hermonat
    • 1
  • Arun Srivastava
    • 1
  • Kenneth I. Berns
    • 1
  1. 1.Department of Immunology and Medical MicrobiologyUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations