Advertisement

In Vitro Synthesis of Cauliflower Mosaic Virus DNA in Viroplasms

  • J. M. Bonneville
  • M. Volovitch
  • N. Modjtahedi
  • D. Demery
  • P. Yot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

Cauliflower Mosaic Virus (CaMV) is a DNA plant virus, and as such an attractive model for studying the molecular biology of plants (1, 2). Its genome is a circular double-stranded molecule, 8 kb in length. The encapsidated form possesses three single-stranded discontinuities (3) where the 5’ and 3’ ends of the interrupted strand overlap one another (4, 5). One interruption is on the transcribed strand a and the other two on the opposite strand 3. Viral DNA is also found in the nucleus as covalently closed supercoiled molecules associated with histones (6). The resulting minichromosomes are actively transcribed (7) into at least two polyadenylated transcripts: the 19S RNA, messenger for the viroplasm matrix protein, and the 35S RNA spanning the whole genome with a terminal redundancy of 180 nucleotides. A model for the replication of CaMV DNA which involves reverse transcription of the 35S RNA is emerging (refer to Pfeiffer et al, in this volume).

Keywords

Viral Sequence Leaf Crude Extract Polyadenylated Transcript Terminal Redundancy Label Organelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shepherd, R.J. (1979) Ann. Rev. Plant Physiol. 30, 405.CrossRefGoogle Scholar
  2. 2.
    Howell, S.H. (1982) Ann. Rev. Plant Physiol. 33, 609.CrossRefGoogle Scholar
  3. 3.
    Volovitch, M., Dumas, J.P., Drugeon, G. and Yot, P. (1977) in: “Nucleic Acids and Proteins Synthesis in Plants”, L. Bogorad and J.H. Weil, eds., Colloq. No 261, Centre National de la Recherche Scientifique, Paris.Google Scholar
  4. 4.
    Franck, A., Guilley, H., Jonard, G., Richards, K. and Hirth, L. (1980) Cell 21, 285.PubMedCrossRefGoogle Scholar
  5. 5.
    Richards, K.E., Guilley, H. and Jonard, C. (1981) FEBS Lett. 134, 67.PubMedCrossRefGoogle Scholar
  6. 6.
    Menissier, J., De Murcia, G., Lebeurier, G. and Hirth, L. (1983) EMBO J. 7, 1067.Google Scholar
  7. 7.
    Olszewski, N., Hagen, G. and Guilfoyle, T.J. (1982) Cell 29, 395.PubMedCrossRefGoogle Scholar
  8. 8.
    Conti, G.C., Vegetti, G., Bassi, M. and Favali, M. (1972) Virology 47, 694.PubMedCrossRefGoogle Scholar
  9. 9.
    Favali, M.A., Bassi, M. and Conti, G.C. (1973) Virology 53, 115.PubMedCrossRefGoogle Scholar
  10. 10.
    Ansa, O.A., Bowyer, J.W. and Shepherd, R.J. (1982) Virology 121, 147.PubMedCrossRefGoogle Scholar
  11. 11.
    Pfeiffer, P. and Hohn, T. (1983) Cell 33, 781.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. M. Bonneville
    • 1
  • M. Volovitch
    • 2
  • N. Modjtahedi
    • 2
  • D. Demery
    • 1
  • P. Yot
    • 1
  1. 1.Laboratoire de Biologie Moléculaire CNRS-INRAGroupement scientifique “Microbiologie” de ToulouseCastanet-TolosanFrance
  2. 2.Section de BiologieInstitut CurieParis Cedex 05France

Personalised recommendations