High Resolution Study of p̄ — Atoms with a Focussing Crystal Spectrometer at LEAR

  • G. L. Borchert
  • O. W. B. Schult
Part of the Ettore Majorana International Science Series book series (EMISS, volume 17)


The performance of the low energy antiproton storage ring LEAR at CERN1,2 should give access to a new field of Nuclear physics studies. The low-eftergy antiproton beam allows to capture very efficiently antiprotons in bound atomic states probing a region around the nucleus which is much closer to the Nuclear surface than electronic or mesonic orbitals. The study of the X-ray transitions therefore yields information about the long range component of the hadronic interaction as well as about static properties of the antiproton3,4,5.The energies of interesting atomic K, L and M transitions in light systems range from 500 eV to 20 keV. The corresponding natural line widths have been estimated to become less than 50 meV, the relevant energy shifts being of the same order of magnitude6,7,8.


Photon Beam Light System Hadronic Interaction Position Sensitive Detector Nuclear Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Gastaldi, K. Kilian and G. Plass CERN report PSCC/79 - 17 (1979)Google Scholar
  2. 2.
    G. Plass CERN report PSDL/80 - 7 (1980)Google Scholar
  3. 3.
    J. Ellis CERN report TH/81 - 3174 (1981)Google Scholar
  4. 4.
    G. Feinberg and J. Sucher, Phys. Rev. D20 1717 (1979)ADSGoogle Scholar
  5. 5.
    G. Fiorentini and R„ Tripiccione, contribution to this workshopGoogle Scholar
  6. 6.
    W.B. Kaufmann and H. Pilkuhn Phys. Rev. C17 (1978) 215ADSGoogle Scholar
  7. 7.
    C.B. Dover and J.M. Richard Phys. Rev. C21 (1981) 1466ADSGoogle Scholar
  8. 8.
    J.M. Richard and M.E. Sainio Phys. Let. HOB, 5 (1982) 349ADSGoogle Scholar
  9. 9.
    U. Gastaldi Nucl. Instr. Meth. 157 (1978) 441 and ASTERIX proposal CERN/PSCC/80 - 101/P28 (1980)CrossRefGoogle Scholar
  10. 10.
    Proposal CERN PSCC/80 - 81/P18 (1980) Proposal CERN PSCC/80 - 99/P27 (1980)Google Scholar
  11. 11.
    Y. Cauchois and C. Bonnelle in Atomic Inner Shell processes Vol. II (1975) 83Google Scholar
  12. 12.
    E. Bovet, F. Boehm, J. Gimlett, H.E. Henrikson, R. Kunselmann, P.L. Lee and J. Markey Nucl. Instr. and Meth. 190 (1981) 613ADSCrossRefGoogle Scholar
  13. 13.
    G. Charpak, G. Petersen, A. Policarpo and F. Sauli Nucl. Instr. and Meth. 148 (1978) 471ADSCrossRefGoogle Scholar
  14. 14.
    F. Sauli Nucl. Instr. and Meth. 156 (1978) 147ADSCrossRefGoogle Scholar
  15. 14a.
    G. Charpak and S. Sauli Nucl. Instr. Meth. 162 (1979) 405CrossRefGoogle Scholar
  16. 15.
    J. Kemmer, Fachbereich Physik, Techn. Univ. München, private communicationGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. L. Borchert
    • 1
  • O. W. B. Schult
    • 1
  1. 1.Institut für KernphysikKernforschungsanlage Jülich GmbHJülichGermany

Personalised recommendations