Advertisement

Production of and Experimentation with Antihydrogen at LEAR

  • H. Herr
  • D. Mohnl
  • A. Winnacker
Part of the Ettore Majorana International Science Series book series (EMISS, volume 17)

Abstract

Since its early days the LEAR project has been accompanied by suggestions to use the cooled antiprotons for the formation of anti-hydrogen atoms (see also [Bu77, Bu78]). In this paper we will discuss in some detail formation of antihydrogen via radiative capture of positrons by antiprotons in flight: Which requirements to a positron beam have to be fulfilled to obtain a sufficient number of antihydrogen atoms for experimentation, how can these requirements be met, what kind of experiments can be done with the resulting antihydrogen beam?

Keywords

Storage Ring Lamb Shift Ruby Laser Radiative Capture Positron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An76.
    D.A. Andrews, G. Newton, Phys.Rev.Lett. 37, 1254 (1976)ADSCrossRefGoogle Scholar
  2. Ba60.
    D.R. Bates, M. Nicolet, J.atmos.terrest.Phys. 18, 65 (1980)CrossRefGoogle Scholar
  3. Be57.
    H.A. Bethe, E.E. Salpeter: Quantum Mechanics of One- and Two- Electron Atoms, Springer, Berlin-Göttingen-Heidelberg (1957)MATHGoogle Scholar
  4. Be62.
    E. Bernini et al., CEN-Saclay internal report June 1962, T.L. Aggsso, L. Burnod, LAL-Orsay internal report LAL 27(1962) J. Haissinski, Nucl.Instr.Meth. 51, 181 (1967)Google Scholar
  5. Be81.
    M. Bell, J.S. Bell, Ref. TH-3054-CERN (1981)Google Scholar
  6. Bu77.
    G. Budker et al., CERN report 77–08 (1977)Google Scholar
  7. Bu78.
    G. Budker, A.N. Skrinsky, Soviet Phys.Usp. 21, (1978) p. 277ADSCrossRefGoogle Scholar
  8. Do81.
    J.B. Donahue, P.A.M. Gram, M.E. Hamm, R.W. Hamm, H.C. Bryant K.B. Butterfield, D.A. Clark, C.A. Frost, W.W. Smith, IEEE Trans.Nucl.Sc. NS-28, 1203 (1981)ADSCrossRefGoogle Scholar
  9. DoZ81.
    A.D. Dolgov, Y.B. Zeldovich, Rev.Mod.Phys. 53, 1 (1981)MathSciNetADSCrossRefGoogle Scholar
  10. Ha68.
    W. Hardt, CERN/ISR 300 GS 68–11 (1968)Google Scholar
  11. Ha75.
    T.W. Hänsch, S.A. Lee, R. Wallenstein, C. Wieman, Phys.Rev. Lett. 34, 307 (1975)ADSCrossRefGoogle Scholar
  12. He81.
    H. Herr, Private communicationGoogle Scholar
  13. K176.
    K. Kleinknecht, Ann.Rev.Nucl.Sci. 26, 1 (1976)ADSCrossRefGoogle Scholar
  14. La70.
    for a summary see: P. Lapostolle, E. Septier (eds.) Linear Accelerators, North Holland, Amsterdam (1970)Google Scholar
  15. Le79.
    LEP Study group: Design study of a 22–130 GeV e+e- colliding beam machine (LEP), Cern-ISR-LEP report 79–33 (1979)Google Scholar
  16. Mi79.
    A.P. Mills, Jr., Appl.Phys.Lett. 35(5), 427 (1979)ADSCrossRefGoogle Scholar
  17. Mi80.
    A.P. Mills, Jr., Appl.Phys. 23, 189 (1980)ADSGoogle Scholar
  18. MiP79.
    A.P. Mills, L.N. Pfeiffer, Phys.Rev.Lett. 43, 1961 (1979)ADSCrossRefGoogle Scholar
  19. Mö80 D. Möhl, G. Petrucci, L. Thorndahl, S. van der Meer, Phys. Rep. 58, 75 (1980)Google Scholar
  20. Ne68.
    R.B. Neal (ed.), The Stanford two Mile Accelerator, p.261, W.A. Benjamin, New York (1968)Google Scholar
  21. Po82.
    H. Poth, A. Wolf, A. Winnacker, forthcoming publicationGoogle Scholar
  22. Se77.
    J. Seguinot, T. Ypsilantis, Nucl.Instr.Meth. 142, 377 (1977)CrossRefGoogle Scholar
  23. So73.
    Y.L. Sokolov, Sov. Phys. JETP 36, 243 (1973)ADSGoogle Scholar
  24. Su64.
    R.E. Sund et al., Nucl.Instr.Meth. 27, 109 (1964)CrossRefGoogle Scholar
  25. Te63.
    E. Terlenghi, L. Mango, Lab.Naz. Frascati report, N.I. 218 (1963)Google Scholar
  26. Wa81.
    R. Wallenstein in: Present status and aims of Quantum Electrodynamics, p. 230, G. Graff, E. Klempt, G. Werth (eds.), Springer Berlin, Heidelberg, New York (1981)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. Herr
    • 1
  • D. Mohnl
    • 1
  • A. Winnacker
    • 2
  1. 1.CERNGeneva 23Switzerland
  2. 2.Physikalisches Institut der UniversitätD-69 HeidelbergW.-Germany

Personalised recommendations