The Electron Cooling Device for LEAR

  • L. Hütten
  • H. Poth
  • A. Wolf
  • H. Haseroth
  • Ch. Hill
Part of the Ettore Majorana International Science Series book series (EMISS, volume 17)


The experiments1,2,3 in which low energetic protons were cooled by a “cold” electron beam have proved that this method is a very powerful technique to improve low energy beams and to increase their phase space density by several orders of magnitude in short times. The theoretical understanding of the cooling process is well advanced4,5,6. The applications of this technique, which was invented and developed in Novosibirsk, are manifold7. It seems to be clear that its main domain is the cooling of non-relativistic ions. However, also at extremely high energies, cooling of protons and antiprotons with stored electrons (cooled themselves by synchrotron radiation) can be contemplated8,9.


Electron Cool Phase Space Density Internal Target Beam Emittance Momentum Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. I. Budker, N. S. Dikansky, V. I. Kudelainen, I. N. Meshkov, V. V. Parchomchuk, D. V. Pestrikov, A. N. Skrinsky and B. N. Sukhina, Part. Accel., 7: 197 (1976),Google Scholar
  2. 1a.
    I. Derbenev and I. Meshkov, “Studies on electron cooling of heavy particle beams made by the VAPP-NAP Group at Novosibirsk”, CERN Yellow Report 77–08 (1977).Google Scholar
  3. 2.
    M. Bell, J. Chaney, H. Herr, F. Krienen, P. Møller-Petersen and G. Petrucci, Nucl. Instrum. Methods, 190: 237 (1981).ADSCrossRefGoogle Scholar
  4. 3.
    R. Forster, T. Hardek, D. E. Johnson, W. Kells, V. Kerner, H. Lai, A. J. Lennox, F. Mills, Y. Miyahara, L. Oleksiuk, R. Peters, T. Rhoades, D. Young, P. M. Melutyre, IEEE Trans. Nucl. Sci., NS 28: 2386 (1981).ADSCrossRefGoogle Scholar
  5. 4.
    Ya. S. Derbenev and A. N. Skrinsky, Part. Accel., 8: 235 (1978).Google Scholar
  6. 5.
    M. Bell, Part. Accel., 10: 101 (1980).Google Scholar
  7. 6.
    A. H. Sørensen, “Calculations on electron cooling”, Institute of Physics, University of Aarhus, Internal Report (1978), and p̄ LEAR Notes 7 and 8 (1979) and “A new approach to the theory on electron cooling”, Contribution to this Workshop.Google Scholar
  8. 7.
    G. I. Budker and A. N. Skrinsky, Sov. Phys. Usp., 21: 277 (1978).ADSCrossRefGoogle Scholar
  9. 8.
    Ya. S. Derbenev and A. N. Skrinsky, “On high energy electron cooling”, Novosibirsk preprint 79–87 (1979).Google Scholar
  10. 9.
    D. Cline, A. Garren, H. Herr, F. E. Mills, C. Rubbia, A. Ruggiero and D. Young, IEEE Trans. Nucl. Sci., NS-26: 3472 (1979).ADSCrossRefGoogle Scholar
  11. 10.
    D. Möhl, “Electron cooling — Stochastic cooling comparison”, Report to this Workshop.Google Scholar
  12. 11.
    H. Haseroth, Ch. Hill, H. Poth and P. Møller-Petersen, “On the use of the ICE gun for electron cooling in LEAR”, CERN/PS/LR Note 80–7 and KfK-Primärbericht 11.01.02.P07D (1980).Google Scholar
  13. 12.
    P. Lefèvre, “The LEAR machine, status report and beam qualities”, Report to this Workshop.Google Scholar
  14. 13.
    K. Kilian, “Physics with an internal target in LEAR”, Report to this Workshop.Google Scholar
  15. 14.
    U. Gastaldi, “Physics with p̄p atoms produced in flight with ̄p and H- co-rotating beams in LEAR”, Report to this Workshop, further reference therein.Google Scholar
  16. 15.
    W. B. Herrmannsfeldt, “Electron Trajectory Program”, SLAC Report 226 (1979).CrossRefGoogle Scholar
  17. 16.
    H. Poth, “High voltage stability requirements for the electron cooler”, CERN/PS/DL/LEAR/Note 81–2 (1981).Google Scholar
  18. 17.
    A. Wolf and H. Poth, German Phys. Soc. Meeting, March 1982, Karlsruhe.Google Scholar
  19. 18.
    H. Herr, “A small decelerator ring for Extra Low Energy Antiprotons (Elena)”, Report to this Workshop.Google Scholar
  20. 19.
    P. Mandrillon, “The Medicyc cyclotron as a provisional decelerator for LEAR”, Report to this Workshop.Google Scholar
  21. 20.
    L. M. Simons, “The cyclotron trap: status of preparation and planned experiments”, Report to this Workshop.Google Scholar
  22. 21.
    M. Giesch, J. Gspann, W. Hardt, K. Kilian, P. Lefèvre, D. Möhl, H. Poth and P. Riboni, “Implications of an internal target for antineutron production in LEAR”, CERN/PS/DL/LEAR Note 81–4 and KfK-Primärbericht 11.01.02P10C (1981).Google Scholar
  23. 22.
    J. Gspann and H. Poth, “Internal cluster beam target for anti-neutron production in LEAR”, KfK-Report 3198 (1981).Google Scholar
  24. 23.
    G. Plass (ed.), “Design study of a facility for experiments with low energy antiprotons”, CERN/PS/DL 80–7 (1980).Google Scholar
  25. 24.
    L. Bracci and G. Fiorentini, Phys. Lett., 85B: 280 (1979).ADSGoogle Scholar
  26. 25.
    A. Winnacker, “Production and experimentation with antihydrogen”, Report to this Workshop.Google Scholar
  27. 26.
    H. Poth, “Antiproton mass measurement using stored beams cooled by electrons”, CERN preprint EP 82–56 submitted to Nuclear Instruments and Methods and contribution to this Workshop.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • L. Hütten
    • 1
  • H. Poth
    • 1
  • A. Wolf
    • 1
  • H. Haseroth
    • 1
  • Ch. Hill
    • 2
  1. 1.Kernforschungszentrum KarlsruheInstitut für KernphysikD-KarlsruheGermany
  2. 2.PS DivisionCERNGeneva 23Switzerland

Personalised recommendations