Endocrine Rhythms Associated with Pineal Gland Function

  • Russel J. Reiter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 54)


The endocrine system exhibits a gamut of rhythms. Many of these have a duration of roughly 24 hours (circadian) while some are approximately 12 months (circannual) in length. All of the rhythms are probably advantageous to the individual animals or to the species as a whole. The factors controlling many of these hormonal fluctuations are likely numerous; and, in many cases, the governing mechanisms remain unknown. Some of the rhythms are undoubtedly related to the activity of the pineal gland, an organ which itself exhibits remarkable variations in its biosynthetic and presumably in its secretory activity. In the pineal gland, the primary impeller of these changes is ostensibly the photoperiodic environment (Quay, 1963a; Axelrod, Wurtman, and Snyder, 1965; Snyder, Axelrod, and Zweig, 1967) and to somewhat lesser extent locomotor activity (Ralph, Mull, Lynch, and Hedlund, 1971; Reiter, Sorrentino, Ralph, Lynch, Mull, and Jarrow, 1971) and hormonal feedback influences (Quay, 1964; Wurtman, Axelrod, Snyder, and Chu, 1965; Houssay and Barcello, 1972).


Luteinizing Hormone Pineal Gland Estrous Cycle Golden Hamster Weddell Seal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertazzi, E., Barbanti-Silva, C., Trentini, G. P., and Botticelli, A. (1966). Influence de l’epiphysectomie et du traitement avec la 5-hydroxytryptamine sur le cycle oestral de la ratte albinos. Ann. Endocrinol. 27, 93–100.Google Scholar
  2. Allen, C., and Kendall, J. W. (1967). Maturation of the circadian rhythm of plasma corticosterone in the rat. Endocrinology 80, 926–930.PubMedCrossRefGoogle Scholar
  3. Alleva, J. J., Waleski, M. V., and Alleva, F. R. (1970). The Zeitgeber for ovulation in rats: non-participation of the pineal gland. Life Sci. 9, 241–246.PubMedCrossRefGoogle Scholar
  4. Axelrod, J., and Weissbach, H. (1960). Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131, 1312.PubMedCrossRefGoogle Scholar
  5. Axelrod, J., Wurtman, R. J., and Snyder, S. H. (1965). Control of hydroxyindole-O-methyltransferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240, 949–954.PubMedGoogle Scholar
  6. Benson, B., Matthews, M. J., and Rodin, A. (1971). A melatonin-free extract of bovine pineal with anti gonadotropic activity. Life Sci. 10, 607–613.CrossRefGoogle Scholar
  7. Benson, B., Matthews, M. J., and Rodin, A. (1972). Studies on a non-melatonin pineal anti gonadotropin. Acta Endocrinol. 69, 257–266.PubMedGoogle Scholar
  8. Benson, B., and Orts, R. J. (1972). Regulation of ovarian growth by the pineal aland. In: Regulation of Organ and Tissue Growth (Goss, R. J., ed.), pp. 315–335, Academic Press, New York.Google Scholar
  9. Butcher, R. L., Fugo, N. W., and Collins, W. E. (1972). Semicircadian rhythm in plasma levels of prolactin during early gestation in the rat. Endocrinology 90, 1125–1127.PubMedCrossRefGoogle Scholar
  10. Cardinali, D. P., and Rosner, J. J. (1971). Retinal localization of the hydroxyindole-O-methyltransferase (HI0MT) in the rat. Endocrinology 89, 301–303.PubMedCrossRefGoogle Scholar
  11. Cardinali, D. P., and Wurtman, R. J. (1972). Hydroxyindole-O-methyltransferase in the rat pineal, retina and Harderian gland. Endocrinology 91, 247–252.PubMedCrossRefGoogle Scholar
  12. Chazov, Ye. I., Isachenkov, V. A., Krisvosheyev, O. G., Veselova, S. N., and Zhivoderova, G. V. (1972). A factor from the pineal body inhibiting the ovulation induced by luteinizing hormone. Dokl. Acad. Nauk. SSSR, 27, 246–248 (In Russian).Google Scholar
  13. Cheesman, D. W. (1970). Structure elucidation of a gonadotropin inhibiting substance from the bovine pineal gland. Biochim. Biophys. Acta 207, 247–253.PubMedGoogle Scholar
  14. Cheifez, P., Gaffud, N., and Dingman, J. F. (1968). Effects of bilateral adrenalectomy and continuous light on the circadian rhythm of corticotropin in female rats. Endocrinology 82, 1117–1124.CrossRefGoogle Scholar
  15. Clark, R. H., and Baker, B. L. (1964). Circadian periodicity in the concentration of prolactin in the rat hypophysis. Science 143, 375–376.PubMedCrossRefGoogle Scholar
  16. Cuello, A. C., and Tramezzani, J. H. (1969). The epiphysis cerebri of the Weddell seal: its remarkable size and glandular pattern. Gen. Comp. Endocrinol. 12, 154–164.PubMedCrossRefGoogle Scholar
  17. Donofrio, R. J., and Reiter, R. J. (1972). Depressed pituitary prolactin levels in blinded anosmic female rats: role of the pineal gland. J. Reprod. Fertil. 31, 159–162.PubMedCrossRefGoogle Scholar
  18. Dunn, J., Dyer, R., and Bennett, M. (1972). Diurnal variation in plasma corticosterone following long term exposure to continuous illumination. Endocrinology 90, 1660–1663.PubMedCrossRefGoogle Scholar
  19. Dunn, J., Bennett, M., and Peppier, P.. (1972). Pituitary-adrenal function in photic and olfactory deprived rats. Proc. Soc. Exptl. Biol. Med. 140, 755–758.Google Scholar
  20. Dunn, J. D., Arimura, A., and Scheving, L. E. (1972). Effect of stress on circadian periodicity in serum LH and prolactin concentration. Endocrinology 90, 29–33.PubMedCrossRefGoogle Scholar
  21. Ebels, I., Moszkowska, A., and Scemama, A. (1970). An attempt to separate a sheep pineal extract fraction showing antigonadotropic activity. J. Neurovisc. Rel. 32, 1–10.Google Scholar
  22. Eiden, C. A., Keyes, M. C., and Marshall, C. E. (1971). Pineal body of the northern fur seal (Callorhinus ursinus): a model for studying the probable function of the mammalian pineal body. Am. J. Vet. Res. 32, 639–647.Google Scholar
  23. Everett, J. W. (1961). The mammalian female reproductive cycle and its controlling mechanisms. In: Sex and Internal Secretions, Vol. I, (Young, W. C., ed.), pp. 497–555, Williams and Wilkins, Baltimore.Google Scholar
  24. Figala, J., Hoffmann, K., and Goldau, G. (1973). Zur Jahresperiodik beim Dsungarischen Zwerghamster Phodopus sungorus Pallas. Oecologia 12, 89–118.CrossRefGoogle Scholar
  25. Fraschini, F. and Martini, L. (1970). Rhythmic phenomena and pineal principles. In: The Hypothalamus (Martini, L., Fraschini, F., and Motta, M., eds.), pp. 529–549, Academic Press, New York.Google Scholar
  26. Freeman, M. E., and Neill, J. D. (1972). The pattern of prolactin secretion during pseudopregnancy in the rat: a daily nocturnal surge. Endocrinology 90, 1291–1294.Google Scholar
  27. Giarman, N. J., Freedman, D. X., and Picard-Ami, L. (1960). Serotonin content of the pineal gland of man and monkey. Nature 186, 480–481.PubMedCrossRefGoogle Scholar
  28. Hakanson, R., and Owman, C. (1966). Pineal dopa decarboxylase and monoamine oxidase activities as related to monoamine stores. J. Neurochem. 13, 597–605.PubMedCrossRefGoogle Scholar
  29. Herbert, J. (1971). The role of the pineal gland in the control by light of the reproductive cycle of the ferret. In: The Pineal Gland (Wolstenholme, G. E. W. and Knight, J., eds.), pp. 303–327, Churchill Livingstone, London.Google Scholar
  30. Herbert, J. (1972). Initial observations on pinealectomized ferrets kept for long periods in either daylight or artificial illumination. J. Endocrinol. 55, 591–597.PubMedCrossRefGoogle Scholar
  31. Hiroshige, T., Abe, K., Wada, S., and Kaneko, M. (1973). Sex differences in circadian periodicity of CRF activity in rat hypothalamus. Neuroendocrinology 11, 306–320.PubMedCrossRefGoogle Scholar
  32. Hoffman, R. A., Hester, R. J., and Towns, C. (1965). Effect of light and temperature on the endocrine system of the golden hamster (Mesocricetus auratus Waterhouse). Comp. Biochem. Physiol. 15, 525–533.PubMedCrossRefGoogle Scholar
  33. Hoffman, R. A., and Reiter, R. J. (1965). Pineal gland: influence on gonads of male hamsters. Science 148, 1609–1611.PubMedCrossRefGoogle Scholar
  34. Hoffmann, K. (1972). Melatonin inhibits photoperiodically induced testes development in a dwarf hamster. Naturwissenschaften 59, 218–219.PubMedCrossRefGoogle Scholar
  35. Hoffmann, K. (1973). The influence of photoperiod and melatonin on testes size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J. Comp. Physiol. 85, 267–282.CrossRefGoogle Scholar
  36. Houssay, A. B., and Barcello, A. C. (1972). Effects of estrogens and progesterone upon the biosynthesis of melatonin by the pineal gland. Experientia 28, 478–479.PubMedCrossRefGoogle Scholar
  37. Illnerova, H. (1971). Effect of environmental lighting on serotonin rhythm in rat pineal gland during postnatal development. Life Sci. 10, 583–590.CrossRefGoogle Scholar
  38. Jacobs, J. J., and Kendall, J. W. (1972). The effect of the pineal on rhythmic pituitary-adrenal function in the blinded rat. Abstracts of Fourth International Congress of Endocrinology, Washington, D.C., p. 53 (Abstract).Google Scholar
  39. Kamberi, I. A., Mical, R. S., and Porter, J. C. (1971). Effects of melatonin and serotonin on the release of FSH and prolactin. Endocrinology 88, 1288–1293.PubMedCrossRefGoogle Scholar
  40. Klein, D. C., Reiter, R. J., and Weiler, J. L. (1971). Pineal N-acetyltransferase activity in blinded and anosmic rats. Endocrinology 89, 1020–1023.PubMedCrossRefGoogle Scholar
  41. Klein, D. C., and Weiler, J. L. (1970). Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095.PubMedCrossRefGoogle Scholar
  42. Lawton, I. E., and Schwartz, N. B. (1968). A circadian rhythm of luteinizing hormone secretion in ovariectomized rats. Am. J. Physiol. 214, 213–217.PubMedGoogle Scholar
  43. Lerner, A. B., Case, J. D., and Takahashi, Y. (1960). Isolation of melatonin and 5-methoxyindole-3-acetic acid. J. Biol. Chem. 235, 1992–1997.PubMedGoogle Scholar
  44. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., and Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587.CrossRefGoogle Scholar
  45. Longnecker, D. E., and Gallo, D. G. (1971). The inhibition of PMSG-induced ovulation in immature rats by melatonin. Proc. Soc. Exp. Biol. Med. 137, 623–625.Google Scholar
  46. Lynch, H. J. (1971). Diurnal oscillations in pineal melatonin content. Life Sci. 10, 791–795.CrossRefGoogle Scholar
  47. Martini, L., Fraschini, F., and Motta, M. (1968). Neural control of the anterior pituitary. Recent Prog. Horm. Res. 24, 439–496.PubMedGoogle Scholar
  48. McGeer, E. G., and McGeer, P. L. (1966). Circadian rhythm in pineal tyrosine hydroxylase. Science 153, 73–74.PubMedCrossRefGoogle Scholar
  49. Mclsaac, W. M., Farrell, G., Taborsky, R. G., and Taylor, A. N. (1965). Indole compounds: isolation from pineal tissue. Science 145, 102–103.CrossRefGoogle Scholar
  50. Mclsaac, W. M., Taborsky, R. G., and Farrell, G. (1964). 5-methoxytryptophol: effect on estrus and ovarian weight. Science 145, 63–64.CrossRefGoogle Scholar
  51. Milcu, S. M., Pavel, S., and Neascu, C. (1963). Biological and chromatographic characterization of a polypeptide with pressor and oxytocic activities isolated from bovine pineal gland. Endocrinology 72, 563–566.CrossRefGoogle Scholar
  52. Mogler, R. K.-H. (1958). Das Endokrine System des Syrischen Goldhamster unter Berucksichtigung des Natürlichen und Experimentallen Winterschlaf. Z. Morphol. Öekl. Tiere. 47, 167–308.Google Scholar
  53. Morin, L. P. (1973). Ovulatory and body weight response of the hamster to constant light or pinealectomy. Neuroendocrinology 12, 192–198.PubMedCrossRefGoogle Scholar
  54. Moszkowska, A. (1965). Quelques données nouvelles sur le mecanisme de l’antagonisme épiphyso-hypophysaire. Rôle possible de la Sérotonine et de la mélatonine. Rev. Suisse Zool. 72, 145–160.PubMedGoogle Scholar
  55. Moszkowska, A., and Ebels, I. (1971). The influence of the pineal body on the gonadotropic function of the hypophysis. J. Neurovisc. Rel., Suppl. X, 160–176.Google Scholar
  56. Muller, E. E., Guistina, G., Miedico, D., Pecile, A., Cocchi, D., and King, F. W. (1970). Circadian pattern of bioassayable and radio-immunoassayable growth hormone in the pituitary of female rats. Proc. Soc. Exp. Biol. Med. 135, 934–939.PubMedGoogle Scholar
  57. Nesić, Lj. (1962). Contribution a l’etude du rythme saisonnier de la grande pinéale de brebis. Acta Anat. 49, 376–377 (Abstract).Google Scholar
  58. Pavel, S. (1963). Cercetari aspura unui nou hormon pineal cu structura peptidica. Cercet. Endocrinol. 14, 665–668.Google Scholar
  59. Pavel, S. (1971). Evidence for the ependymal origin of arginine vasotocin in the bovine pineal gland. Endocrinology 89, 613–614.PubMedCrossRefGoogle Scholar
  60. Pavel, S., Petrescu, M., and Vicoleanu, N. (1973). Evidence of central gonadotropin inhibiting activity of arginine vasotocin in the female mouse. Neuroendocrinology 11, 370–374.PubMedCrossRefGoogle Scholar
  61. Pelham, R. W., and Ralph, C. L. (1972). Diurnal rhythm of serum melatonin in chicken: abolition by pinealectomy. Physiologist 15, 236 (Abstract).Google Scholar
  62. Pelham, R. W., Ralph, C. L., and Campbell, I. M. (1972). Mass spectral identification of melatonin in blood. Biochem. Biophys. Res. Com. 46, 1236–1241.PubMedCrossRefGoogle Scholar
  63. Pelham, R. W., Vaughan, G. M., Sandock, K. L., and Vaughan, M. K. (1973). Twenty-four hour cycle of a melatomin-1ike substance in the plasma of human males. J. Clin. Endocrinol. Metab. 37, 341–344.CrossRefGoogle Scholar
  64. Pflügfelder, O. (1956). Physiologie der Epiphyse. Deut. Zool. Gesell. Verh. 50, 53–75.Google Scholar
  65. Porter, J. C., Mical, R. S., and Cramer, O. M. (1971/1972). Effect of serotonin and other indoles on the release of LH, FSH and prolactin. Gynecol. Invest., 2, 13–22.CrossRefGoogle Scholar
  66. Quay, W. B. (1956). Volumetric and cytologic variation in the pineal body of Peromyscus leucopus (Rodentia) with respect to sex, captivity and day-length J. Morphol. 98, 471–495.CrossRefGoogle Scholar
  67. Quay, W. B. (1963a). Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473–479.CrossRefGoogle Scholar
  68. Quay, W. B. (1963b). Differential extraction for the spectrophotofluorometric measurement of diverse 5-hydroxy- and 5-methoxyindoles. Anal. Biochem. 5, 51–59.PubMedCrossRefGoogle Scholar
  69. Quay, W. B. (1964). Circadian and estrous rhythm in pineal melatonin and 5-hydroxyindole-3-acetic acid. Proc. Soc. Exp. Biol. Med. 115, 710–713.PubMedGoogle Scholar
  70. Quay, W. B., and Halevy, A. (1962). Experimental modification of the rat pineal’s content of serotonin and related indoleamines. Physiol. Zool. 35, 1–7.Google Scholar
  71. Ralph, C. L., Mull, D., Lynch, H. J., and Hedlund, L. (1971). A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89, 1361–1366.PubMedCrossRefGoogle Scholar
  72. Ramaley, J. A. (1973). The development of daily changes in serum corticosterone in pre-weanling rats. Steroids 21, 433–442.PubMedCrossRefGoogle Scholar
  73. Reiter, R. J. (1968a). The pineal gland and gonadal development in male rats and hamsters. Fertil. Steril. 19, 1009–1017.PubMedGoogle Scholar
  74. Reiter, R. J. (1968b). Pineal-gonadal relationships in male rodents. In: Progress in Endocrinology (Gual, C., ed.), pp. 631–636, Excerpta Medica, Amsterdam.Google Scholar
  75. Reiter, R. J. (1969). Pineal function in long term blinded male and female golden hamsters. Gen. Comp. Endocrinol. 12, 460–468.PubMedCrossRefGoogle Scholar
  76. Reiter, R. J. (1972a). The role of the pineal in reproduction. In: Reproductive Biology (Balin, H., and Glasser, S., eds.), pp. 71–114, Excerpta Medica, Amsterdam.Google Scholar
  77. Reiter, R. J. (1972b). Surgical procedures involving the pineal gland which prevent gonadal degeneration in adult male hamsters. Ann. Endocrinol. 33, 571–582.Google Scholar
  78. Reiter, R. J. (1972c). Evidence for refractoriness of the pituitarygonadal axis to the pineal gland in golden hamsters and its possible implications in annual reproductive rhythms. Anat. Rec. 173, 365–371.PubMedCrossRefGoogle Scholar
  79. Reiter, R. J. (1973a). Comparative physioloay: pineal gland. Ann. Rev. Physiol. 35, 305–328.CrossRefGoogle Scholar
  80. Reiter, R. J. (1973b). Pineal control of a seasonal reproductive rhythm in male golden hamsters exposed to natural daylight and temperature. Endocrinology 92, 423–430.PubMedCrossRefGoogle Scholar
  81. Reiter, R. J. (1974a). Effect of light and the pineal on gonadotropins: some theoretical considerations. In: Biochemistry and Physiology of the Pineal Gland (Klein, D. C., ed.), Spectrum Publ. Co., New York, in press.Google Scholar
  82. Reiter, R. J. (1974b). Influence of pinealectomy on the breeding capability of hamsters maintained under natural photoperiodic and temperature conditions. Neuroendocrinology, in press.Google Scholar
  83. Reiter, R. J., and Sorrentino, S., Jr. (1971). Inhibition of luteinizing hormone release and ovulation in PMS-treated rats by peripherally administered melatonin. Contraception 4, 385–392.CrossRefGoogle Scholar
  84. Reiter, R. J., Sorrentino, S., Jr., and Ellison, N. M. (1970). Interaction of photic and olfactory stimuli in mediating pineal-induced gonadal regression in adult female rats. Gen. Comp. Endocrinol. 15, 326–333.PubMedCrossRefGoogle Scholar
  85. Reiter, R. J., Sorrentino, S., Jr., Ralph, C. L., Lynch, H. J., Mull, D., and Jarrow, E. (1971). Some endocrine effects of blinding and anosmia in adult male rats with observations on pineal melatonin. Endocrinology 88, 895–900.PubMedCrossRefGoogle Scholar
  86. Reiter, R. J., Vaughan, M. K., Vaughan, G. M., Sorrentino, S., Jr., and Donofrio, R. J. (1974). The pineal gland as an organ of internal secretion. In: Frontiers of Pineal Physiology (Altschule, M. D., ed.), Harvard University Press, Cambridge, in press.Google Scholar
  87. Rønnekleiv, O. K., Krulich, L., and McCann, S. M. (1973). An early morning surge of prolactin in the male rat and its abolition by pinealectomy. Endocrinology 92, 1339–1342.PubMedCrossRefGoogle Scholar
  88. Rust, C. C., and Meyer, R. K. (1969). Hair color, molt, and testes size in male, short-tailed weasels treated with melatonin. Science 165, 912–922.CrossRefGoogle Scholar
  89. Sassin, J. F., Frantz, A. G., Weitzman, E. D., and Kapen, S. (1972). Human prolactin: 24-hour pattern with increased release during sleep. Science 177, 1205–1207.PubMedCrossRefGoogle Scholar
  90. Schwartz, N. B. (1970). Control of rhythmic secretion of gonadotropins. In: The Hypothalamus (Martini, L., Motta, M., and Fraschini, F., eds.), pp. 515–528, Academic Press, New York.Google Scholar
  91. Schwartz, N. B., and McCormack, C. E. (1972). Reproduction: gonadal function and its regulation. Ann. Rev. Physiol. 34, 425–472.CrossRefGoogle Scholar
  92. Simonovic, I., Tima, L., and Martini, L. (1971). “Hypothalamic deafferentation” and gonadotropin secretion. Experientia 27, 211–212.PubMedCrossRefGoogle Scholar
  93. Smit-Vis, J. H. (1972). The effect of pinealectomy and of testosterone administration on the occurrence of hibernation in adult male golden hamsters. Acta Morph. Neerl. Scand. 10, 269–282.Google Scholar
  94. Smit-Vis, J. H., and Akkerman-Bellaart, M. A. (1967). Spermiogenesis in hibernating golden hamsters. Experientia 23, 844–845.PubMedCrossRefGoogle Scholar
  95. Snyder, S. H., Axelrod, J., and Zweig, M. (1967). Circadian rhythm in the serotonin content of the rat pineal gland: regulating factors. J. Pharmacol. Exp. Therap. 158, 206–213.Google Scholar
  96. Sorrentino, S., Jr., and Reiter, R. J. (1970). Pineal-induced alteration of estrous cycles in blinded hamsters. Gen. Comp. Endocrinol. 15, 39–42.PubMedCrossRefGoogle Scholar
  97. Sorrentino, S., Jr., Reiter, R. J., and Schalch, D. S. (1971a). Hypotrophic reproductive organs and normal growth in male rats treated with melatonin. J. Endocrinol. 51, 213–214.CrossRefGoogle Scholar
  98. Sorrentino, S., Jr., Schalch, D. S., and Reiter, R. J. (1971b). Environmental control of growth hormone and growth. In: Growth and Growth Hormone (Pecile, A., and Muller, E. E., eds.), pp. 330–348, Excerpta Medica, Amsterdam.Google Scholar
  99. Thieblot, L. (1965). Physiology of the pineal body. Prog. Brain Res. 10, 479–488.PubMedCrossRefGoogle Scholar
  100. Thieblot, L., Alassimare, A., and Blaise, S. (1966). Etude chromatographique et électrophorétique du facteur antigonadotrope de la glande pinéale. Ann. Endocrinol;. 27, 861–866.Google Scholar
  101. Thieblot, L., and Blaise, S. (1966). Etude biochimique du principe pinéal antigonadotrope. Probl. Actuels. Endocrinol. Nutr. 10, 257–275.PubMedGoogle Scholar
  102. Thieblot, L., and Menigot, M. (1971). Acquisitions récentes sur le facteur antigonadotrope de la glande pinéale. J. Neurovisc. Rel., Suppl. X, 153–159.Google Scholar
  103. Turner, W. (1888). The pineal body (epiphysis cerebri) in the brain of the walrus and seals. J. Anat. Physiol. 22, 300–303.PubMedGoogle Scholar
  104. Vaughan, M. K., Benson, B., Norris, J. T., and Vaughan, G. M. (1971). Inhibition of compensatory ovarian hypertrophy in mice by melatonin, 5-hydroxytryptamine and pineal powder. J. Endocrinol. 50, 171–175.PubMedCrossRefGoogle Scholar
  105. Vaughan, M. K., and Klein, D. C. (1973). Effect of arginine vasotocin on gonadal stimulation induced by exogenous or endogenous gonadotrophin. Amer. Zoologist 13, 1288 (Abstract).Google Scholar
  106. Vaughan, M. K., Reiter, R. J., Vaughan, G. M., Bigelow, L., and Altschule, M. D. (1972). Inhibition of compensatory ovarian hypertrophy in the mouse and vole: a comparison of Altschule’s pineal extract, pineal indoles, vasopressin and oxytocin. Gen. Comp. Endocrinol. 18, 372–377.PubMedCrossRefGoogle Scholar
  107. Vlahakes, G., and Wurtman, R. J. (1972). A Mg2+ dependent hydroxyindole-O-methyltransferase in the rat Harderian gland. Biochim. Biophys. Acta, 261, 194–198.PubMedCrossRefGoogle Scholar
  108. Watzka, M., and Voss, H. (1967). Verqleichende histologische Studien an der Zirbel der Vögel. Verh. Anat. Ges. 120, 177–183.Google Scholar
  109. Weiss, B., and Costa, E. (1967). Effect of denervation and environmental lighting on the norepinephrine reduced activation of adenyl cyclase of the rat pineal aland. Fed. Proc. 26, 765 (Abstract).Google Scholar
  110. Weiss, B., and Crayton, J. (1970). Gonadal hormones as regulators of pineal adenyl cyclase activity. Endocrinology 87, 527–533.PubMedCrossRefGoogle Scholar
  111. Weissbach, H., Redfield, B. G., and Axelrod, J. (1960). Biosynthesis of melatonin: enzymatic conversion of serotonin to N-acetylserotonin. Biochim. Biophys. Acta 43, 352–353.PubMedCrossRefGoogle Scholar
  112. Wurtman, R. J., and Axelrod, J. (1966). A 24-hour rhythm in the content of norepinephrine in the pineal and salivary glands of the rat. Life Sci. 5, 665–669.PubMedCrossRefGoogle Scholar
  113. Wurtman, R. J., Axelrod, J., and Chu, E. W. (1963). Melatonin, a pineal substance: effect on the rat ovary. Science 141, 277–278.PubMedCrossRefGoogle Scholar
  114. Wurtman, R. J., Axelrod, J., and Fischer, J. E. (1964). Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143, 1329–1330.CrossRefGoogle Scholar
  115. Wurtman, R. J., Axelrod, J., and Phillips, L. S. (1963). Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1072.PubMedCrossRefGoogle Scholar
  116. Wurtman, R. J., Axelrod, J., Sedvall, G., and Moore, R. Y. (1967). Photic and neural control of the 24-hour norepinephrine rhythm in the rat pineal gland. J. Pharmacol. Exp. Therap. 157, 487–492.Google Scholar
  117. Wurtman, R. J., Axelrod, J., Snyder, S. H., and Chu, W. W. (1965). Changes of the enzymatic synthesis of melatonin in the pineal during the estrous cycle. Endocrinology 76, 798–800.PubMedCrossRefGoogle Scholar
  118. Ying, S. -Y., and Greep, R. O. (1973). Inhibition of ovulation by melatonin in the cyclic rat. Endocrinology 92, 333–335.PubMedCrossRefGoogle Scholar
  119. Zieher, L. M., and Pellegrino de Iraldi, A. (1966). Central control of the noradrenaline content in the rat pineal and submaxillary gland. Life Sci. 5, 155–161.PubMedCrossRefGoogle Scholar

Discussion References

  1. Cardinali, D., Larin, F., and Wurtman, R. J. (1972). Proc. Natl. Acad. Sci. USA 69, 2003–2005.PubMedCrossRefGoogle Scholar
  2. Lauber, J., Boyd, J., and Axelrod, J. (1968). Science 161, 489–490.PubMedCrossRefGoogle Scholar
  3. Peat, F., and Kinson, G. A. (1971). Steroids 17, 251–264.PubMedCrossRefGoogle Scholar
  4. Pelham, R., and Ralph, C. (1972). Life Sci. 11, 51–59.CrossRefGoogle Scholar
  5. Timonens, S., Franzas, B., and Wichmann, K. (1964). Ann. Chir. Gynaec. Fenn. 53, 165–172.Google Scholar
  6. Vriend, J., and Lauber, J. K. (1973). Nature 244, 37–38.PubMedCrossRefGoogle Scholar
  7. Weiss, B. (1968). Adv. Pharmacol. 6A, 152–155.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Russel J. Reiter
    • 1
  1. 1.Department of Anatomy, Health Science CenterUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations