Biological Rhythms

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 54)


“Before the advent of the theory of relativity it had always been tacitly assumed in physics that the statement of time had an absolute significance, i.e., that it is independent of the state of motion of the body of reference” (Einstein, 1920, 1922). Einstein challenged the concept of simultaneity for events taking place at a great distance, said to occur at the same moment in some “absolute time.” He conceived of time as a coordinate always associated with the three space coordinates for any reference body under consideration in a four-dimensional manifold. To many physicists today time is not absolute, but only a measurement that depends on the frame of reference from which it is made (Einstein, 1920, 1922, 1905). Einstein emphasized that a statement of the time of an event has no meaning unless it is accompanied by an indication of the reference body. (As a consequence he claimed the passage of time is retarded in a system moving at high speed. According to his theory of relativity, events in a high-speed system appear to occur more slowly — including life processes, notably aging. The problem of whether the passage of time depends upon speed continues to be a subject of experimentation [Hafele and Keating, 1972] as well as debate [Terrell, 1972]).


Circadian Rhythm Cold Spring Harbor Blood Eosinophil Circadian System Biological Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, R. V. (1968). Temporal secretory responses of cultured hamster adrenals. Comp. Biochem. Physiol. 26, 179.PubMedGoogle Scholar
  2. Andrews, R. V. and Folk, G. E., Jr. (1964). Circadian metabolic patterns in cultured hamster adrenal glands. Comp. Biochem. Physiol. 11, 393.PubMedGoogle Scholar
  3. Andrews, R. V. and Shiotsuka, R. (1974). In vitro adrenal studies in relation to cyclic reproductive success. In: Biorhythms and Human ReproductionProceedings of the International Institute for the Study of Human Reproduction (Ferin, M. , Halberg, F., Richart, R., and Vande Wiele, R., eds.), pp. 591–605, Wiley, New York.Google Scholar
  4. Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp. Quant. Biol. 25, 11–28.PubMedGoogle Scholar
  5. Aycock, W. L., Foley, G. E., and Hendrie, K. H. (1946). The epidemiologic significance of amplitudes of seasonal fluctuation in infectious disease. Am. J. Med. Sci. 211, 709.PubMedGoogle Scholar
  6. Aycock, W. L., Lutman, G. E., and Foley, G. E. (1945). Seasonal prevalence as a principle in epidemiology. Am. J. Med. Sci. 209, 395.Google Scholar
  7. Brown, H. E. and Dougherty, T. F. (1956). The diurnal variation of blood leucocytes in normal and adrenalectomized mice. Endocrinology 58, 365.PubMedGoogle Scholar
  8. Cardoso, S. S., Scheving, L. E., and Halberg, F. (1970). Mortality of mice as influenced by the hour of the day of drug (ara-C) administration. Pharmacologist 12, 302.Google Scholar
  9. Descovich, G. C., Montaibetti, N., Kühl, J. F. W., Rimondi, S., and Halberg, F. (1973). Circadian as well as circannual in-phase synchronization of urinary epinephrine (E) and norepinephrine (NE) and acrophase-difference of E or NE with NER = NE/(NE+E) in mature and presumably health human beings. Int. J. Chronobiol. 1, 324.Google Scholar
  10. Einstein, A. (1905). Zur electrodynamik bewegter Körper. Ann. Phys. (Leipzig) 322, 891–921.Google Scholar
  11. Einstein, A. (1920). Relativity: The special and general theory, Methuen, London.Google Scholar
  12. Einstein, A. (1922). Sidelights on relativity, Methuen, London.Google Scholar
  13. Ertel, R. J., Halberg, F., and Ungar, F. (1964). Circadian system phase-dependent toxicity and other effects of methopyrapone (SU-4885) in mice. J. Pharmacol. Exp. Ther. 146, 395–399.PubMedGoogle Scholar
  14. Frost, W. H. and Gover, M. (1932). The incidence and time distribution of common colds in several groups kept under continuous observation. Weekly Pub. Health Rep. 47, 1815.Google Scholar
  15. Gafafer, W. M. (1931). Upper respiratory disease (common cold) and the weather. Am. J. Hyg. 13, 771.Google Scholar
  16. Galicich, J. H., Haus, E., Halberg, F., and French, L. A. (1964). Variance spectra of corticosteroid in adrenal venous effluent of anesthetized dogs. Ann. N.Y. Acad. Sci. 117, 281–291.PubMedGoogle Scholar
  17. Hafele, J. C. and Keating, R. E. (1972). Around-the-World-Atomic-Clocks: Observed relativisitc time gains. Science 177, 166.PubMedGoogle Scholar
  18. Halberg, F. (1953). Some physiological and clinical aspects of 24-hour periodicity. Lancet 73, 20–32.Google Scholar
  19. Halberg, F. (1954). Beobachtungen liber 24 Stunden-Periodik in standardisierter Versuchsanordnung vor und nach Epinephrektomie und bilateraler optischer Enukleation. Ber. Ges. Physiol. 162, 354–355.Google Scholar
  20. Halberg, F. (1960). Temporal coordination of physiologic function. Cold Spring Harbor Symp. Quant. Biol. 25, 289–310.Google Scholar
  21. Halberg, F. (1961). Circadian aspects of mitosis and metabolism. Rep. Ross Conf. Pediatr. Res. 39, 41–44.Google Scholar
  22. Halberg, F. (1965). Organisms as circadian systems; temporal analysis of their physiologic and pathologic responses, including injury and death. In: Symposium on Medical Aspects of Stress in the Military Climate, Proceedings, pp. 1–36, Walter Reed Army Institute of Research, Washington.Google Scholar
  23. Halberg, F. (1968). Physiologic considerations underlying rhythmometry, with special reference to emotional illness. In: Biological Cycles and Psychiatry, Symposium Bel-Air III (de Ajuriaguerra, J., ed.), pp. 73–126, Masson, Geneva.Google Scholar
  24. Halberg, F. (1969). Chronobiology. Annu. Rev. Physiol. 31, 675–725.PubMedGoogle Scholar
  25. Halberg, F. (1970). Body temperature, circadian rhythms and the eye. In: La Photoregulation de la Reproduction chez les Oiseaux et les Mammifères (Benoit, J. and Assenmacher, I., eds.), pp. 497–528, Centre National de la Recherche Scientifique, Paris.Google Scholar
  26. Halberg, F. (1973). Chronobiology and its promise for health care and environmental integrity. Int. J. Chronobiol. 1, 10–14.PubMedGoogle Scholar
  27. Halberg, F., Barnum, C. P., Silber, R. H., and Bittner, J. J. (1958). 24-hour rhythms at several levels of integration in mice on different lighting regimens. Proc. Soc. Exp. Biol. Med. 97, 897–900.PubMedGoogle Scholar
  28. Halberg, F., Engeli, M., Hamburger, C., and Hillman, D. (1965). Spectral resolution of low-frequency, small-amplitude rhythms in excreted ketosteroid; probable androgen-induced circaseptan desynchroniza-tion. Acta Endocrinol. (Suppl.) 103, 54.Google Scholar
  29. Halberg, F., Frank, G., Harner, R., Matthews, J., Aaker, H., Gravem, H., and Melby, J. (1961). The adrenal cycle in men on different schedules of motor and mental activitiy. Experientia 17, 282.PubMedGoogle Scholar
  30. Halberg, F., Galicich, J. H., Ungar, F., and French, L. A. (1965). Circadian rhythmic pituitary adrenocorticotropic activity, rectal temperature and pinnal mitosis of starving, dehydrated C-mice. Proc. Soc. Exp. Biol. Med. 118, 414–419.PubMedGoogle Scholar
  31. Halberg, F., Halberg, E., Barnum, C. P., and Bittner, J. J. (1959). Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Photoperiodism and Related Phenomena in Plants and Animals (Withrow, R. B. ed.), pp. 803–878, Am. Assoc. Adv. Sci., Washington.Google Scholar
  32. Halberg, F., Halberg, J., Halberg, F., and Halberg, E. (1973). Reading, ‘riting,’ rithmetic ... and rhythms — a new “relevant” “R” in the educative process. Perspect. Biol. Med. 17, 128–141.PubMedGoogle Scholar
  33. Halberg, F., Haus, E., Cardoso, S. S., Scheving, L. E., Kühl, J. F. W., Shiotsuka, R., Rosene, G., Pauly, J. E., Runge, W., Spalding, J. F., Lee, J. K., and Good, R. A. (1973). Toward a chronotherapy of neoplasia: tolerance of treatment depends upon host rhythms. Experientia 29, 909–934.PubMedGoogle Scholar
  34. Hal berg, F., Jacobson, E., Wadsworth, G., and Bittner, J. J. (1958). Audiogenic abnormality spectra, 24-hour periodicity and lighting. Science 128, 657–658.PubMedGoogle Scholar
  35. Halberg, F., Johnson, E. A., Brown, B. W., and Bittner, J. J. (1960). Susceptibility rhythm to E. coli endotoxin and bioassay. Proc. Soc. Exp. Biol. Med. 103, 142–144.PubMedGoogle Scholar
  36. Halberg, F., Katinas, G. S., Chiba, Y., Garcia-Sainz, M., Kovats, T. G., Kunkel, H., Montalbetti, N., Reinberg, A., Scharf, R., and Simpson, H. (1973). Chronobiologic glossary of the International Society for the Study of Biological Rhythms. Inter. J. Chronobiol. 1, 31–63Google Scholar
  37. Halberg, F., Loewenson, R., Winter, F., Bearman, J., and Adkins, J. (1960). Physiologic circadian systems (differences in period of circadian rhythms or in their component frequencies; some methodologic implications to biology and medicine). Minn. Acad. Sci. 28, 53–57.Google Scholar
  38. Halberg, F., Nelson, W., Runge, W. J., Schmitt, O. H., Pitts, G. C., Tremor, J., and Reynolds, O. E. (1971). Plans for orbital study of rat biorhythms. Results of interest beyond the biosatellite program. Space Life Sci. 2, 437–471Google Scholar
  39. Halberg, F., Peterson, R. E., and Silber, R. H. (1959). Phase relations of 24-hour periodicities in blood corticosterone, mitoses in cortical adrenal parenchyma and total body activity. Endocrinology 64, 222–230.PubMedGoogle Scholar
  40. Halberg, F. and Reinberg, A. (1967). Rythmes circadiens et rythmes de basses fréquences en physiologie humaine. J. Physiol. 59, 117–200.Google Scholar
  41. Halberg, F., Reinberg, A., Haus, E., Ghata, J., and Siffre, M. (1970). Human biological rhythms during and after several months of isolation underground in natural caves. Natl. Speleol. Soc. Bull. 32, 89–115.Google Scholar
  42. Halberg, F. and Simpson, H. (1967). Circadian acrophases of human 17-hydroxycorticosteroid excretion referred to midsleep rather than midnight. Hum. Biol. 39, 405–413.PubMedGoogle Scholar
  43. Halberg, F. and Visscher, M. B. (1952). Effect of light and of availability of food upon the 24-hour rhythm in number of circulating eosinophils in mice. Am. J. Physiol. 171, 732.Google Scholar
  44. Halberg, F., Visscher, M. B., and Bittner, J. J. (1953). Eosinophil rhythm in mice: Range of occurrence; effects of illumination, feeding, and adrenalectomy. Am. J. Physiol. 174, 313–315.PubMedGoogle Scholar
  45. Halberg, F., Visscher, M. B., Flink, E. B., Berge, K., and Bock, R. (1951). Diurnal rhythmic changes in blood eosinophil levels in health and in certain diseases. Lancet 71, 312–319.Google Scholar
  46. Halberg, F. and Visscher, M. B. (1952). A difference between the effects of dietary calorie restriction on the estrus cycle and on the 24-hour adrenal cortical cycle in rodents. Endocrinology 51, 329–335.PubMedGoogle Scholar
  47. Haus, E., Halberg, F., Kühl, J. F. W., and Lakatua, D. J. (1974). Chronopharmacology in animals. In: Capri Symposium (In Press).Google Scholar
  48. Haus, E. and Halberg, F. (1962). Der circadiane Adrenalzyklus und seine Bedeutung für die Reaktionsbereitschaft der Nebennierenrinde. Wien. Z. Inn. Med. 8, 361–370.Google Scholar
  49. Haus, E., Lakatua, D., and Halberg, F. (1967). The internal timing of several circadian rhythms in the blinded mouse. Exp. Med. Surg. 25, 7–45.PubMedGoogle Scholar
  50. Haus, E. (1964). Periodicity in response and susceptibility to environmental stimuli. Ann. N.Y. Acad. Sci. 117, 292–315.PubMedGoogle Scholar
  51. Haus, E. and Halberg, F. (1959). 24-hour rhythm in susceptibility of C-mice to a toxic dose of ethanol. J. Appl. Physiol. 14, 878–880.PubMedGoogle Scholar
  52. Haus, E. and Halberg, F. (1962). Interactions of a chemical carcinogen with neuroendocrine factors in mouse breast cancer. Experientia 18, 340–341.PubMedGoogle Scholar
  53. Haus, E., Halberg, F., Scheving, L., Cardoso, S., Kühl, J., Sothern, R., Shiotsuka, R., Hwang, D. S., and Pauly, J. E. (1972). Increased tolerance of leukemic mice to arabinosyl cytosine given on a schedule adjusted-to circadian system. Science 177, 80–82.PubMedGoogle Scholar
  54. Hellbrügge, Th. (1960). The development of circadian rhythms in infants. Cold Spring Harbor Symp. Quant. Biol. 25, 311–324.Google Scholar
  55. Howard, R. B. (1952). Studies on the Metabolism of Iron, Ph.D. Thesis, University of Minnesota, Minneapolis.Google Scholar
  56. Kaine, H. D., Seltzer, H. S., and Conn, J. W. (1955). Mechanisms of diurnal eosinophil rhythm in man. J. Lab. Clin. Med. 45, 247.PubMedGoogle Scholar
  57. Lillie, R. D., Dyer, R. E., Armstrong, C, and Pasternack, J. G. (1937). Seasonal variation in intensity of brain reaction of St. Louis encephalitis in mice and of endemic typhus in guinea pigs. Public Health Rep. 52, 1805.Google Scholar
  58. Mills, J. N. (1967). Circadian rhythms and shift workers. Trans. Soc. Occup. Med. 17, 5–7.PubMedGoogle Scholar
  59. Pearce, L., Brown, W. H., and Van Allen, C. M. (1924). Studies based on a malignant tumor of the rabbit. IV. Variations in growth and malignancy of transplanted tumors. Part 2: Factors influencing the results of serial transplantation. J. Exp. Med. 40, 603.PubMedGoogle Scholar
  60. Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25, 159–184.PubMedGoogle Scholar
  61. Pritchett, I. W. (1925). Microbic virulence and host susceptibility in paratyphoid — enteritidis infection of white mice. VII. Seasonal variation in the susceptibility of different strains of mice to per os infection with the Type II bacillus of mouse typhoid. J. Exp. Med. 41, 209.PubMedGoogle Scholar
  62. Reimann, H. (1963). Periodic Diseases, Davis, Philadelphia.Google Scholar
  63. Reinberg, A., Gervais, P., Halberg, F., and Halberg, F. (1971). Trisen-tinel monitoring of air pollution by autorhythmometry of peak expiratory flow. In: Proceedings of the Second International Clean Air Congress (Englund, H. M. and Berry, W. T., eds.), pp. 217–220, Academic, New York.Google Scholar
  64. Reinberg, A., Ghata, J., Halberg, F., Apfelbaum, M., Gervais, P., Boudon, P., Abulker, C., and Dupont, J. (1971). Distribution temporelle du traitement de l’insuffisance corticosurrenaliene -- essai de chronotherapeutique. Ann. Endocrinol. 32, 566–573.Google Scholar
  65. Rummel, J. A., Lee, J. K., and Halberg, F. (In Press). Combined linear-non-linear chronobiologic windows by least squares resolve neighboring components in a physiologic rhythm spectrum. In: Bio-rhythms and Human Reproduction — Proceedings of the International Institute for the Study of Human Reproduction (Ferin, M., Hal berg, F., Richart, R., and Vande Wiele, R., eds.), pp. 53–82, Wiley, New York.Google Scholar
  66. Santorio, S. (1957). de Statica Medicina, Vlaco, Hague.Google Scholar
  67. Scheving, L. E., Halberg, F., and Pauly, J. E. (eds.) (1974). Chronobiology — Proceedings of the International Society for the Study of Biological Rhythms, Igaku Shoin, Ltd., Tokyo.Google Scholar
  68. Scheving, L., Halberg, F., Pauly, J. E., Burns, E. R., Tsai, S., and Betterton, H. (1973). Lighting regimen dominates over interacting meal schedules and synchronizes mitotic rhythm in mouse corneal epithelium. Anat. Rec. (In Press).Google Scholar
  69. Shiotsuka, R., Jovonovich, J., and Jovonovich, J. (1974). Circadian and ultradian rhythms in adrenal- organ cultures. In: Capri Symposium (In Press).Google Scholar
  70. Siffre, M., Reinberg, A., Hal berg, F., Ghata, J., Perdriel, G., and Slind, R. (1966). L’isolement souterrain prolonge. Etude de deux sujets adultes sains avant, pendant et apres cet isolement. Presse Med. 74, 915–919.PubMedGoogle Scholar
  71. Simpson, H. W., Gjessing, L., Fleck, A., Kühl, J., and Halberg, F. (1974). Phase analysis of the somatic and mental variables in Gjessing’s case 2484 or intermittent catatonia. In: Chronobiology — Proceedings of the International Society for the Study of Biological Rhythms (Scheving, L. E., Halberg, F., and Pauly, J. E., eds.), pp. 535–539, Igaku Shoin, Ltd., Tokyo.Google Scholar
  72. Smolensky, M., Halberg, F., and Sargent, F. (1972). Chronobiology of the life sequence. In: Advances in Climatic Physiology (Itoh, S., Ogata, K., and Yoshimura, H., eds.), pp. 281–318, Igaku Shoin, Ltd., Tokyo.Google Scholar
  73. Terrell, J. (1972). The clock “paradox” — majority view. Phys. Today 25, 9.Google Scholar
  74. Ungar, F. and Halberg, F. (1962). Circadian rhythm in the in vitro response of mouse adrenal to adrenocorticotropic hormone. Science 137, 1058.PubMedGoogle Scholar
  75. Ungar, F. and Halberg, F. (1963). In vitro demonstration of circadian rhythm in adrenocorticotropic activity of C-mouse hypophysis. Experientia 19, 158.PubMedGoogle Scholar
  76. Webster, L. T. (1927). Epidemiologic studies on respiratory infection in the rabbit. IX. The spread of Bacterium lepisepticum infection at a rabbit farm in New York City. J. Exp. Med. 45, 529–551.PubMedGoogle Scholar
  77. Wilson, G. S. (1930). Transient fluctuations in the resistance of mice to infection with B. aertryche. J. Hyg. 30, 196.Google Scholar

Discussion References

  1. Apfelbaum, M., Reinberg, A., Nillus, P., and Halberg, F. (1969). Presse Med. 77, 879–882.PubMedGoogle Scholar
  2. Aschoff, J., Pöppel, E., and Wever, R. (1969). Pflügers Arch. 306, 58–70.PubMedGoogle Scholar
  3. Bolles, R. and Duncan, P. (1969). Physiol. Behav. 4, 87.Google Scholar
  4. Galicich, J. H., Halberg, F., and French, L. A. (1963). Nature 197, 811–813.PubMedGoogle Scholar
  5. Galicich, J. H., Halberg, F., French, L. A., and Ungar, F. (1965). Endocrinol. 76, 895–901.Google Scholar
  6. Bouquot, J. E., Vichers, R. A., and Gorlin, R. F. (1973). Int. J. Chronobiol. 1, 327–328.Google Scholar
  7. Halberg, F. (1973). In: Biological Aspects of Circadian Rhythms (Mills, J. M., ed.), pp. 1–26, Plenum Press, New York.Google Scholar
  8. Halberg, F. (1960). Cold Spring Harbor Symp. Quant. Biol. 25, 289–310.Google Scholar
  9. Halberg, F., Galicich, J. H., Ungar, F., and French, L. A. (1965). Proc. Soc. Exp. Biol. Med. 118, 414–419.PubMedGoogle Scholar
  10. Halberg, F., Halberg, E., Barnum, C. P., and Bittner, J. J. (1959). In: Photopeviodism and Related Phenomena in Plants and Animals (Withrow, R. B., ed.), pp. 803–878, Am. Assoc. Adv. Sci., Washington, D.C.Google Scholar
  11. Halberg, F., Visscher, M. B., and Bittner, J. J. (1953). Am. J. Physiol. 174, 313–315.PubMedGoogle Scholar
  12. Haus, E., Hanton, E. M., and Halberg, F. (1959). Physiologist 2, 54.Google Scholar
  13. Levine, H., Halberg, F., and Taylor, D. (1973). Graefe’s Archiv. 188, 263–280.Google Scholar
  14. Levine, H., Ramshaw, W. A., and Halberg, F. (1967). Physiologist 10, 230 (Abstract).Google Scholar
  15. Nelson, W., Cadotte, L, and Halberg, F. (1973). Proc. Soc. Exp. Biol. Med. 144, 766–769.PubMedGoogle Scholar
  16. Nelson, W., Nichols, G., Halberg, F., and Kottke, G. (1973). Int. J. Chronobiol. 1, 347.Google Scholar
  17. Nelson, W. and Halberg, F. (1973). Space Life Sci. 4, 249–257.PubMedGoogle Scholar
  18. Pauly, J. E., Burns, E. R., Betterton, H., Tsai, S., Halberg, F., and Scheving, L. E. (1973). Int. J. Chronobiol. 1, 348–349.Google Scholar
  19. Ramaley, J. A. (1974). Neuroendocrinology (In press).Google Scholar
  20. Reinberg, A., Clench, J., Aymard, N., Galliot, M., Bourdon, R., Gervais, P., Abulker, C., and Dupont, J. (1974). C. R. Acad. Sci. Paris 278, 1503.Google Scholar
  21. Reiter, R., Blum, K., Wallace, J., and Merritt, J. (1973). Quart. J. Stud. Alc. 34, 937–939.Google Scholar
  22. Rosner, J., Denari, J., Nagle, C, Cardinali, D., de Perez Bedes, G., and Orsi, L. (1972). Life Sci. II (pt. II), 829–836.Google Scholar
  23. Rutenfranz, J. and Singer, R. (1967). Int. Z. Angew. Physiol. Einschl. Arbeitsphvsiol. 24, 1–17.Google Scholar
  24. Stupfel, M., Halberg, E., and Halberg, F. (1973a). C. R. Acad. Sci. [D], Paris 277, 873–876.Google Scholar
  25. Stupfel, M., Halberg, F., Halberg, F., Halberg, E., and Lee, J. K. (1973b). Int. J. Chronobiol. 1, 259–267.Google Scholar
  26. Yunis, E. J., Halberg, F., McMullen, A,, Roitman, B., and Fernandes, G. (1973). Int. J. Chronobiol. 1, 368–369.Google Scholar
  27. Zinneman, H. H., Halberg, F., Haus, E., and Kaplan, M. (1974). Int. J. Chronobiol. 2, 3–16.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  1. 1.Chronobiology Laboratories, Department of Laboratory Medicine and Pathology Health Sciences CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations