Histochemical and Ultrastructural Study of the Growth Plate in Achondroplasia

  • E. Ippolito
  • J. A. Maynard
  • M. R. Mickelson
  • I. V. Ponseti
Part of the Basic Life Sciences book series (BLSC, volume 48)


Previous histological and ultrastructural studies of the growth plates in achondroplasia have not pointed out any specific feature characteristic of the abnormal growth pattern. The conflicting data we (12) and others (3,16,22–25) have found were apparently due to different biopsy sites, or related to species differences. Ultrastructural studies of the chondrocytes in human achondroplasia and different animal models of short-limbed skeletal dysplasias have not delineated any abnormal feature other than an increased number of dead cells in the growth plate.


Iliac Crest Growth Plate Alcian Blue Horizontal Septum Cellulose Acetate Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Anderson, Glycoproteins of the Connective Tissue Matrix, Internat. Rev. Connect. Tissuse Res. 7:251 (1976).Google Scholar
  2. 2.
    R. Bangle Jr. and W. C. Alford, The Chemical Basis of Periodic Acid Schiff Reaction to Collagen Fibers with Reference to Periodate Consumption by Collagen and by Insulin, J. Histochem. and Cytochem. 2:62 (1954).CrossRefGoogle Scholar
  3. 3.
    C. Bona, V. Stanescu and D. Streja, Differential Regional Distribution of Mucopolysaccharides in the Human Epiphyseal Cartilage Matrix in Normal and Pathologic Conditions, Virchows Arch. Path. Anat. 342:274 (1967).CrossRefGoogle Scholar
  4. 4.
    A. Hulth, Experimental Retardation of Endochondral Growth by Papain, Acta Orthop. Scandinavica 28:1 (1959).Google Scholar
  5. 5.
    H. Koenig, Histological Distribution of Brain Gangliosides: Lysosomes as Glycoprotein Granules, Nature 195:782 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Koenig and A. Jibril, Acid Glycolipids and the Role of Ionic Bonds in the Structure-Linked Latency of Lysosomal Hydrolases, Biochim. Biophys. Acta 65:543 (1962).PubMedCrossRefGoogle Scholar
  7. 7.
    D. J. Newton, J. E. Scott and P. Whiteman, The Estimation of Acid Glycosaminoglycan-Alcian Blue Complexes Eluted from Electrophoretic Strips, Analyt. Biochem. 62:268 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    A. B. Novikoff and E. Essner, The Liver Cell. Some New Approaches to its Study, Am. J. Med. 29:102 (1960).PubMedCrossRefGoogle Scholar
  9. E. Ippolito, V. Pedrini and A. Pedrini-Mille, Histochemical Properties of Proteoglycans (in preparation).Google Scholar
  10. 10.
    A. Pedrini-Mille and V. Pedrini, Glycosaminoglycans and Proteoglycans in Human Achondroplasia, Trans. Orthop. Res. Soc. 3:66 (1978).Google Scholar
  11. A. Pedrini-Mille and V. Pedrini, Proteoglycans and Glycosaminoglycans of Human Achondroplastic Iliac Crest Cartilage and Fibular Growth Plate (unpublished data).Google Scholar
  12. 12.
    I. V. Ponseti, Skeletal Growth in Achondroplasia, J. Bone and Joint Surg. 52-A:701 (June 1970).Google Scholar
  13. 13.
    G. Quintarelli and M. C. Dellovo, The Chemical and Histochemical Properties of Alcian Blue. IV. Further Studies on the Methods for the Identification of Acid Glycosaminoglycans, Histochemie 5:196 (1965).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Quintarelli, M. C. Dellovo, C. Balduini and A. A. Castellani, The Effects of Alpha Amylase on Collagen-Proteoglycans and Collagen-Glycoprotein Complexes in Connective Tissue Matrices, Histochemie 18:373 (1969).PubMedGoogle Scholar
  15. 15.
    G. N. Ramachandran and A. H. Reddi, “Biochemistry of Collagen”, Plenum Press, New York (1976).Google Scholar
  16. 16.
    D. L. Rimoin, G. N. Hughes, R. L. Kaufman, R. E. Rosenthal, W. H. McAlister and R. Silberberger, Endochondral Ossification in Achondroplastic Dwarfism, New England J. Med. 283:728 (1970).CrossRefGoogle Scholar
  17. 17.
    P. Rubin, Experimental Basis of Abnormal Bone Modeling, in: “Dynamic Classification of Bone Dysplasias”, p.38, Year Book Medical Publishers, Chicago (1964).Google Scholar
  18. 18.
    R. K. Schenk, D. Spiro and J. Wiener, Cartilage Resorption in the Tibial Epiphyseal Plate of Growing Rats, J. Cell. Biol. 34:275 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    J. E. Scott, Affinity, Competition and Specific Interactions in the Biochemistry and Histochemistry of Polyeletrolytes, Biochem. Soc. Trans. 1:787 (1973).Google Scholar
  20. 20.
    J. E. Scott and J. Dorling, Differential Staining of Acid Glycosaminoglycans (Mucopolysaccharides) by Alcian Blue in Salt Solutions, Histochemie 5:221 (1965).PubMedCrossRefGoogle Scholar
  21. 21.
    J.’ E. Scott and R. J. Harbinson, Periodate Oxidation of Acid Polysaccharides. Inhibition by the Electrostatic Field of the Substrate, Histochemie 14:215 (1968).PubMedCrossRefGoogle Scholar
  22. 22.
    T. H. Shepard, L. R. Fry and B. C. Moffett Jr., Microscopic studies of Achondroplastic Rabbit Cartilage, Teratology 2:13 (1969).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Silberberg, M. Hasler and P. Lesker, Ultrastructure of Articular Cartilage of Achondroplastic Mice, Acta Anat. 96:162 (1976).PubMedCrossRefGoogle Scholar
  24. F. Stanescu, R Stanescu and P. Maroteaux, Etude morphologique et biochimique du cartilage de croissance dans les ostéochonxdrodysplasies. Arch. Française pediat. 34 Supplément, 1:1 (1977).Google Scholar
  25. 25.
    F. Stanescu, R. Stanescu and J. A. Szirmai, Microchemical Analysis of Human Tibial Growth Cartilage in Various Forms of Dwarfism, Acta Endocrinol. 69:659 (1972).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • E. Ippolito
    • 1
  • J. A. Maynard
    • 2
  • M. R. Mickelson
    • 2
  • I. V. Ponseti
    • 2
  1. 1.Dept. of Orthopedic SurgeryUniv. of Reggio CalabriaCatanzaroItaly
  2. 2.Department of Orthopedic SurgeryUniv. of IowaUSA

Personalised recommendations