Molecular Genetic Studies in Achondroplasia

  • Clair A. Francomano
  • Phan-Lan Le
  • Reed E. Pyeritz
Part of the Basic Life Sciences book series (BLSC, volume 48)


The clinical phenotype of achondroplasia has been extensively covered by other speakers in this symposium. In summary, the condition is a dominantly inherited form of rhizomelic dwarfism with an incidence estimated between 1/20,000 and 1/50,000 live births (1). The mutation presents as a primary disorder of bone growth; manifestations in other systems, such as the neuroaxis (2), appear to result from bony impingement. Because the achondroplasia gene acts principally at the growth plate, those gene products which are known to be structurally crucial to cartilage have naturally come under investigation in the search for the cause of achondroplasia.


Growth Plate Collagen Gene COL2A1 Gene Important Structural Component Bony Impingement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Rimoin, The chondrodystrophies. Adv. Hum. Genet. 5:1 (1974).Google Scholar
  2. 2.
    J. T. Hecht, I. J. Butler and C. I. Scott Jr., Long term neurologic sequelae in achondroplasia, Eur. J. Pediatr. 143:58 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Bornstein and H. Sage, The biochemistry of collagens, Ann. Rev. Biochem. 49:957 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    K. S. E. Cheah, Collagen genes and inherited connective tissue disease, Biochem. J. 229:287 (1985).PubMedGoogle Scholar
  5. 5.
    A. Pedrini-Mille and V. Pedrini, Proteoglycans and glycosaminoglycans of human achondroplastic cartilage, J. Bone Joint Surg. (Am.) 64:39 (1982).Google Scholar
  6. 6.
    C. Huerre, C. Junien, D. Weil, M. L. Chu, M. Morabito, N. Van Cong, J. C. Myers, C. Foubert, M. S. Gross, D. J. Prockop, A. Boue, J. C. Kaplan, A. de la Chapell and F. Ramirez, Human type I procollagen genes are located on different chromosomes, Proc. Nat. Acad. Sci. USA 79:6627 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Ippolito, V. A. Pedrini and A. Pedrini-Mille, Histochemical properties of cartilage proteglycans, J. Histochem. Cytochem. 31:53 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    M. B. Goldring, L. J. Sandell, M. L. Stephenson and S. M. Krane, Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes, J. Biol. Chem. 19:9049 (1986).Google Scholar
  9. 9.
    Q. W. A. Horton, J. W. Chou and M. A. Machado, Cartilage collagen analysis in the chondrodystrophies. Coll. Relat. Res. 5:349 (1985).PubMedGoogle Scholar
  10. 10.
    C. M. Strom and W. B. Upholt, Isolation and characterization of genomic clones corresponding to the human type II procollagen gene. Nucleic Acids Res. 12:1025 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    A. M. Nunez, C. A. Francomano, M. F. Young, G. R. Martin and Y. Yamada, Isolation and partial characterization of genomic clones coding for a human pro alpha I (II) chain, and demonstration of restriction fragment polymorphism at the 3 end of the gene, Biochem. 24:6343 (1985).CrossRefGoogle Scholar
  12. 12.
    M. L. Law, L. Tung, H. G. Morse, R. Berger, C. Jones, K. S. E. Cheah and E. Solomon, The human type II collagen gene (C0L2A1) assigned to 12ql4.3, Ann. Hum. Genet. 50:131 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Botstein, R. L. White, M. H. Skolnick and R. W. Davis, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32:314 (1980).PubMedGoogle Scholar
  14. 14.
    C. Gastreau, C. Rahuel, J. P. Cartron and G. Lucotte, Comparison of two methods of high molecular weight DNA isolation from human leukocytes. Anal. Biochem. 134:320 (1983).CrossRefGoogle Scholar
  15. 15.
    C. A. Francomano and H. H. Kazazian Jr., DNA analysis in genetic disorders, Ann. Rev. Med. 37:377 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Tsipouras, F. O. Sangiorgi, M. L. Chu, D. Weil, R. C. Schwartz and F. Ramirez, DNA markers associated with the human procollagen genes, (HGM8) Cytogenet. Cell Genet. 40:762 (1985).Google Scholar
  17. N. G. Stoker, K.S.E. Cheah, J. Griffin and E. Solomon, A highly polymorphic region 3’ to the human type II collagen gene (C0L2A1) on chromosome 12, (HGM8) Cytogenet. Cell Genet. 40:754 (1985) (abs.).Google Scholar
  18. 18..
    B. Sykes, Personal communication (1986).Google Scholar
  19. 19.
    C. E. L. Eng., R. M. Pauli and C. M. Strom, Nonrandom association of a type II procollagen genotype with achondroplasia, Proc. Nat. Acad. Sci. USA 82:5465 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    R. M. Pauli, M. M. Conroy, L. O. Langer Jr., D. G. McLone, T. Naidich, R. Franciosi, I. M. Ratner and S. C. Copps, Homozygous achondroplasia with survival beyond infancy. Am. J. Med Genet. 16:459 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Ogilvie, P. Wordsworth, E. Thompson and B. Sykes, Evidence against the structural gene encoding type II collagen (COL2A1) as the mutant locus in achondroplasia, J. Med. Genet. 23:19 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Clair A. Francomano
    • 1
  • Phan-Lan Le
    • 1
  • Reed E. Pyeritz
    • 1
  1. 1.Division of Medical Pediatrics and GeneticsJohns Hopkins University, School of MedicineBaltimoreUSA

Personalised recommendations