Advertisement

Secondary Processes Following Excitation of Air

  • R. K. Landshoff
  • J. L. Magee
  • M. Scheibe

Abstract

To keep track of how the primary energy redistributes itself and how much of it appears as fluorescent radiation in various bands and lines, how much of it is used up for ionization, dissociation etc., is a complicated job of bookkeeping. Since only some of the relevant cross sections are known one has to make judicious use of all available information and make model assumptions to guess where one has not enough information. Such an attempt was made by the authors in a report (Lockheed, LMSD-48361) which appeared in 1958. Since that time many new experimental and theoretical data have become available so that it is possible to make these assignments somewhat better now.

Keywords

Secondary Electron Primary Electron Ionization Cross Section Positive Band Radiation Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, E.W., Report LA-3439-MS, TID-4500, 1965.Google Scholar
  2. Bortner, M. H., Research Directed Toward an Investigation of the Chemical Kinetics of Atmospheric Deionization, AFCRL-65–392, Air Force Cambridge Research Lab., Bedford, Mass., 1965.Google Scholar
  3. Bortner, M. H., DASA Reaction Rate Handbook, DASA 1948, Defense Atomic Support Agency, October, 1967.Google Scholar
  4. Branscomb, L.M. and R.E. LeLevier, Changes in the Chemical Composition of the Atmosphere Following Intense Ionization Impulses, RM-4364-PR, The RAND Corp., Santa Monica, Calif., 1964.Google Scholar
  5. Carleton, N.P. and O. Oldenberg, J. Chem. Phys. 36, 3460, 1962.ADSCrossRefGoogle Scholar
  6. Curran, R.K., J. Chem. Phys. 38, 2974, 1963.ADSCrossRefGoogle Scholar
  7. Davidson, G. and R. O’Neil, J. Chem. Phys. 41, 3946, 1964a.ADSCrossRefGoogle Scholar
  8. Davidson, G. and R. O’Neil, Report AFCRL-64–466, 1964b.Google Scholar
  9. Fan, C.Y., Phys. Rev. 103, 1740, 1956.ADSCrossRefGoogle Scholar
  10. Ferguson, E.E., F.C. Fehsenfeld, A.L. Schmeltekopf, P.D. Goldan and H.I. Schiff, J. Chem. Phys. 44, 4087, 1966ADSCrossRefGoogle Scholar
  11. Ferguson, E.E., F.C. Fehsenfeld, A.L. Schmeltekopf, P.D. Goldan and H.I. Schiff, J. Chem. Phys. 44, 4095, 1966ADSCrossRefGoogle Scholar
  12. F.C. Fehsenfeld, A.L. Schmeltekopf and E.E. Ferguson, J. Chem. Phys. 44, 4537, 1966.ADSCrossRefGoogle Scholar
  13. Ferguson, E.E., Private communication to R. Gunton, 1966.Google Scholar
  14. Frankenthal, S., O.P. Manley and Y.M. Treve, J. Chem. Phys. 44, 257, 1966.ADSCrossRefGoogle Scholar
  15. Fueki, K. and J.L. Magee, Discussions Faraday Soc. 36, 19, 1963CrossRefGoogle Scholar
  16. Fueki, K. and J.L. Magee, J. Phys. Chem. 68, 2901, 1964.CrossRefGoogle Scholar
  17. Gerbes, W., Ann. d. Phys. 30, 169, 1937.ADSCrossRefGoogle Scholar
  18. Gioumousis, G. and D.P. Stevenson, J. Chem. Phys. 29, 294, 1958.ADSCrossRefGoogle Scholar
  19. Hamill, W.J. and N. Boelrijk, J. Amer. Chem. Soc. 84, 730, 1962;CrossRefGoogle Scholar
  20. L.P. Theard and W.J. Hamill, J. Amer. Chem. Soc. 84, 1134, 1962CrossRefGoogle Scholar
  21. T.S. Moran and W.J. Hamill, J. Chem. Phys. 39, 1413, 1963.ADSCrossRefGoogle Scholar
  22. Harteck, P. and S. bondes, J. Chem. Phys. 27, 546, 1957.ADSCrossRefGoogle Scholar
  23. Harteck, P. and S. bondes, J. Chem. Phys. 28, 975, 1958.ADSCrossRefGoogle Scholar
  24. Harteck, P. and S. bondes, Science 146, 30, 1964.ADSCrossRefGoogle Scholar
  25. Harteck, P., S. bondes and B. Thompson, Science 147, 393, 1965.ADSCrossRefGoogle Scholar
  26. Hartman, P.L., Los Alamos Report, LA-3147-MS, 1964.Google Scholar
  27. Hasted, J.B., Inelastic Collisions between Atomic Systems, Advances in Electronics and Electron Physics 13, Ed. by L. Marton, Academic Press, N.Y., 1960.Google Scholar
  28. Hisatsune, I.C., B. Crawford, Jr. and R.A. Ogg, Jr., J. Amer. Chem. Soc. 79, 4648, 1957.CrossRefGoogle Scholar
  29. Keneshea, T.J., A Solution to the Reaction Rate Equation in the Atmosphere below 150 Kilometers, AFCRL-63–711, Air Force Cambridge Research Lab., Bedford, Mass., 1963.Google Scholar
  30. Kircher, J.F., J.S. McNulty, J.L. McFarling and A. Levy, Radiation Res. 13, 452, 1960.CrossRefGoogle Scholar
  31. Langevin, P., Ann. Chem. Phys. 5, 245, 1905.MATHGoogle Scholar
  32. Latter, R., and R.E. LeLevier, J. Geophys. Res. 68, 1643, 1963.ADSCrossRefGoogle Scholar
  33. LeLevier, R.E., J. Geophys. Res. 69, 481, 1964.ADSCrossRefGoogle Scholar
  34. Lichten, W., J. Chem. Phys. 26, 306, 1957.ADSCrossRefGoogle Scholar
  35. Lind, S.C., Chemical Effects of Alpha Particles and Electrons, The Chemical Catalog Co., N.Y., 1928.Google Scholar
  36. Lind, S.C., Radiation Chemistry of Gases, Rheinhold, N.Y., 1961.Google Scholar
  37. McGrath, W.D. and R.G.W. Norrish, Proc. Roy. Soc. A242, 265, 1957.ADSCrossRefGoogle Scholar
  38. Phelps, A.V. and W.H. Kasner, Studies and Experimental Work on Atomic Collision Processes Occurring in Atmospheric Gases, AFWL-TR-66–34, Air Force Weapons Lab., Kirtland Air Force Base, N.M., 1966.Google Scholar
  39. Physics of the Ionization Processes in Air, Lockheed Report LMSD-48361, 1958 (now out of print).Google Scholar
  40. Platzmann, R.L., Radiation Res. 2, 1, 1955.CrossRefGoogle Scholar
  41. Przybylski, A., Zs. f. Phys. 168, 504, 1962.ADSCrossRefGoogle Scholar
  42. Rapp, D. and W.E. Francis, J. Chem. Phys. 37, 2631, 1962.ADSCrossRefGoogle Scholar
  43. Silverman, S.M. and E.N. Lassettre, J. Chem. Phys. 42, 3420, 1965.ADSCrossRefGoogle Scholar
  44. Thomson, J.J., Phil. Mag. 47, 337, 1924.Google Scholar
  45. Whyte, C.N., Radiation Research 18, 265, 1963.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • R. K. Landshoff
  • J. L. Magee
  • M. Scheibe

There are no affiliations available

Personalised recommendations