Surface Self-Diffusion at High Temperatures

  • P. G. Shewmon


The first evidence that atoms diffuse much more rapidly over the surface than through the lattice was presented in 1921 by Volmer and Estermann [1], who studied the rate of growth of mercury whiskers from a mercury vapor and found that they could explain their results only if they assumed that atoms hitting the shank of the whisker diffused over the surface to the tip before becoming incorporated in the lattice. In the intervening 35 years, there were many observations that indicated that atoms could diffuse along surfaces much more rapidly than through the lattice. However, these were primarily qualitative observations; the quantitative work was performed after 1955. Some of the work has been done with the field emission technique, for example, work on the spreading of adsorbed gases on tungsten tips [2]. This topic is not discussed here; what is exclusively considered is the diflfusion of metal atoms over their own surfaces.


Surface Diffusion Lattice Diffusion Volume Diffusion Acta Meet Boundary Groove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Volmer and I. Estermann, Z. Physik 7: 1–13 (1921).CrossRefGoogle Scholar
  2. 2.
    G. Ehrlich, in: Metal Surfaces, ASM (Cleveland), 1963, p. 221.Google Scholar
  3. 3.
    W. W. Mullins, J, Appl Phys. 28: 335 (1957).CrossRefGoogle Scholar
  4. 4.
    N. Gjostein, Trans. AIME 221: 1039 (1961).Google Scholar
  5. 5.
    J. Choi and P. G. Shewmon, Trans. AIME 124: 589 (1962).Google Scholar
  6. 6.
    F. J. Bradshaw, R. H. Brandon, and C. Wheeler, Acta Met. 12: 1057 (1964).CrossRefGoogle Scholar
  7. 7.
    J. J. Pye and J. B. Drew, Trans. AIME 230: 1500 (1964).Google Scholar
  8. 8.
    N. Hackerman and N. H. Simpson, Trans. Faraday Soc. 42: 376 (1956).Google Scholar
  9. 9.
    J. Choi and P. G. Shewmon, Trans. AIME 230: 123 (1964).Google Scholar
  10. 10.
    P. G. Shewmon, J. Appl. Phys. 34: 755 (1963).CrossRefGoogle Scholar
  11. 11.
    R. A. Nickerson and E. R. Parker, Trans. ASM 42: 376 (1950).Google Scholar
  12. 12.
    J. C. Fisher, J. Appl. Phys. 22: 74 (1951).CrossRefGoogle Scholar
  13. 13.
    G. E. Rhead, Acta Met. 13: 223 (1965).CrossRefGoogle Scholar
  14. 14.
    G. Rhead and J. Perdersan, Compt. Rend. 260: 1929 (1965).Google Scholar
  15. 15.
    J. Oudar, Compt. Rend. 249: 91 (1959).Google Scholar
  16. 16.
    J. P. Barbour, F. M. Charbonnier,et al., Phys. Rev. 117: 1452 (1960).CrossRefGoogle Scholar
  17. 17.
    S. Brenner, in: Metal Surfaces, ASM (Cleveland), 1963, p. 305.Google Scholar
  18. 18.
    P. G. Shewmon and J. Choi, Trans. AIME 22A: 589 (1962).Google Scholar
  19. 19.
    P. G. Shewmon and J. Choi, Trans. AIME 221: 515 (1963).Google Scholar
  20. 20.
    F. A. Nichols and W. W. Mullins, J. Appl. Phys. 36: 1826 (1965).CrossRefGoogle Scholar
  21. 21.
    T. L. Wilson and P. G. Shewmon, Trans. AIME 236: 48 (1966).Google Scholar
  22. 22.
    P. S. Barnes and D. J. Mazey, Proc. Roy. Soc. (London) A275: 47 (1963).Google Scholar
  23. 23.
    P. G. Shewmon, Trans. AIME 230: 1134 (1964).Google Scholar
  24. 24.
    A. Kuper, H. Letow, L. Slifkin, and C. Tomizuka, Phys. Rev. 98: 1870 (1955).CrossRefGoogle Scholar
  25. 25.
    C. Tomizuka and E. Sonder, Phys. Rev. 103: 1182 (1956).CrossRefGoogle Scholar
  26. 26.
    R. Hoffman, F. Pickus, and R. Ward, Trans. AIME 206: 483 (1956).Google Scholar
  27. 27.
    S. Makin, A. Rowe, and A. LeClaire, Proc. Phys. Soc. 70B: 545 (1957).Google Scholar
  28. 28.
    Y. Adda and A. Kirianenko, Compt. Rend. 247: 744 (1958).Google Scholar
  29. 29.
    V. Lyashenko, Fiz. Metal, i Metalloved. 1: 362 (1959).Google Scholar
  30. 30.
    G. V. Kidson and R. Ross, Radio Isotopes in Scientific Research, Vol. I, Pergamon Press (Oxford), 1958, p. 185.Google Scholar
  31. 31.
    Y. Oishi and W. D. Kingery, J. Chem. Phys. 33: 480 (1960).CrossRefGoogle Scholar
  32. 32.
    J. Y. Choi and P. G. Shewmon, Trans. AIME 224: 589 (1962).Google Scholar
  33. 33.
    G. E. Rhead, Acta Met. 11: 1035 (1963).CrossRefGoogle Scholar
  34. 34.
    J. M. Blakely and H. Mykura, Acta Met. 11: 399 (1963).CrossRefGoogle Scholar
  35. 35.
    N. A. Gjostein, Ford Scientific Lab, private communication.Google Scholar
  36. 36.
    J. M. Blakely and H. Mykura, Acta Met. 11: 399 (1963).CrossRefGoogle Scholar
  37. 37.
    J. Blakely and H. Mykura, Acta Met. 10: 565 (1962).CrossRefGoogle Scholar
  38. 38.
    W. Robertson and R. Chang, “The Kinetics of Grain-Boundary Groove Growth on Alumina Surfaces,” Materials Science Research, Vol. 3, Plenum Press (New York), 1966, pp. 49–60.Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • P. G. Shewmon
    • 1
  1. 1.Carnegie Institute of TechnologyPittsburghUSA

Personalised recommendations