Nucleation and Condensation in Polymer Systems

  • Fraser P. Price


Synthetic high-polymeric materials, particularly crystallizable ones, have the following two attributes which sharply distinguish them from most other substances: (1) essentially all of them were unknown as recently as thirty years ago, and (2) their molecules have an essentially thread-like shape. Liquids of metals or low-molecular-weight molecules can, to a good approximation, be regarded as aggregates of spheres, or at worst, ellipsoids of small axial ratio. On the other hand, the length of a typical, synthetic, high-polymer molecule is several thousand times its width. Thus, it is not surprising that synthetic high polymers exhibit properties that are very different from those of low-molecular-weight substances, e.g., rubbery behavior. The molecules of synthetic high polymers, being held together by covalent bonds, usually remain inviolate throughout the manipulations to which they are subjected. This is in contradistinction to the melting behavior of inorganic glasses where, because of structure, there must be interchange of bonds between neighboring atoms [1].


Polymer System Volume Energy Panel Discussion Transient Heat Conduction Spherulite Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Mackenzie, Modern Aspects of the Vitreous State, Butterworths (Washington, D. C.), 1960, Chap. 1.Google Scholar
  2. 2.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press (Ithaca, N. Y.), 1953, Chap. X.Google Scholar
  3. 3.
    L. Mandelkern, Crystallization of Polymers, McGraw-Hill (New York), 1964.Google Scholar
  4. 4.
    P. H. Till, J. Polymer Sci. 17: 447 (1957).Google Scholar
  5. 5.
    A. Keller, Phil. Mag. 2: 21 (1957).CrossRefGoogle Scholar
  6. 6.
    E. Fischer, Z. Naturforsch. 12a: 753 (1957).Google Scholar
  7. 7.
    P. H. Geil, Polymer Single Crystals, John Wiley-Interscience (New York), 1963, Chap. II.Google Scholar
  8. 8.
    A. Keller, Kolloid-Z. 197: 98 (1964).CrossRefGoogle Scholar
  9. 9.
    F. P. Price, J. Polymer Sci. 42: 49 (1960).CrossRefGoogle Scholar
  10. 10.
    J. I. Lauritzen, Jr., and J. D. Hoffman, J. Res. Nad. Bur. Std. 64A: 73 (1960).Google Scholar
  11. 11.
    M. Volmer, Z. Physik. Chem. 102: 267 (1922).Google Scholar
  12. 12.
    V. F. Holland and P. H. Lindenmeyer, J. Polymer Sci. 57: 589 (1962).CrossRefGoogle Scholar
  13. 13.
    A. Keller, J. Polymer Sci. 36: 361 (1959).CrossRefGoogle Scholar
  14. 14.
    E. H. Boasson and J. M. Voestenenk, J. Polymer Sci. 24: 57 (1957).CrossRefGoogle Scholar
  15. 15.
    F. Khoury, J. Polymer Sci. 33: 389 (1958).CrossRefGoogle Scholar
  16. 16.
    J. Mann and L. Roldan-Gonzalez, J. Polymer Sci. 60: 1 (1962).CrossRefGoogle Scholar
  17. 17.
    W. Brenschede, Kolloid-Z. 114: 35 (1949).CrossRefGoogle Scholar
  18. 18.
    P. H. Geil, op. cit., p. 232ff.Google Scholar
  19. 19.
    F. Danusso and F. Sabbiani, Rend. Inst. Lombardo Sci. Lettere A92: 435 (1958).Google Scholar
  20. 20.
    R. P. Palmer and A. Cobbold, private communication.Google Scholar
  21. 21.
    A. Keller and S. Sawada, Makromol. Chem. 74: 190 (1964).CrossRefGoogle Scholar
  22. 22.
    I. L. Hay and A. Keller, Nature 204: 862 (1964).CrossRefGoogle Scholar
  23. 23.
    H. D. Keith and F. J. Padden, Jr., J. Polymer Sci. 39: 101, 123 (1959).Google Scholar
  24. 24.
    F. P. Price, J. Polymer Sci. 39: 139 (1959).CrossRefGoogle Scholar
  25. 25.
    P. J. Flory and A. D. Mclntyre, J. Polymer Sci. 18: 592 (1955).CrossRefGoogle Scholar
  26. 26.
    J. D. Hoffman and J. I. Lauritzen, Jr.,J. Res. Natl. Bur. Std. 65A: 297 (1961).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • Fraser P. Price
    • 1
  1. 1.General Electric Research LaboratorySchenectadyUSA

Personalised recommendations