Some Aspects of Classical Surface Thermodynamics

  • P. L. de Bruyn
Conference paper


The special contribution of matter lying in and around phase boundaries to the total energy of heterogeneous systems is normally ignored in thermodynamic treatises. This neglect implies that the density of energy of a given phase remains uniform up to a mathematical surface separating it from contiguous phases. However, because of the finite, although short, range of action of atomic forces, the assumed sharp phase boundaries should actually be replaced by an interphasal region of finite thickness across which the density of energy or of any other thermodynamic property changes much less abruptly. It is reasonable to expect the normal thickness of this transition region to be of the order of a few molecular diameters; unless the system has a relatively high surface to volume ratio, as would be the case in colloidal systems, the additional contribution of the “surface” atoms to the total energy content may justifiably be ignored.


Surface Tension Plane Surface Surface Stress Critical Nucleus Equilibrium Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. van der Waals, Verhandel. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. Sect. I (1893).Google Scholar
  2. 2.
    G. Bakker, in: Handbuch der Experimentalphysik, Vol. 6, W. Wien and F. Harms (eds.), Akademische Verlagsgesellschaft (Leipzig), 1928, Chapter 15.Google Scholar
  3. 3.
    J. W. Cahn and J. E. Milliard, J. Chem. Phys. 28: 258 (1958).CrossRefGoogle Scholar
  4. 4.
    J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31: 688 (1959).CrossRefGoogle Scholar
  5. 5.
    E. W. Hart, Phys. Rev. 113: 412 (1959); J. Chem. Phys. 39: 3075 (1963)CrossRefGoogle Scholar
  6. 6.
    J. W. Gibbs, Collected Works, Vol. I, Yale University Press (New Haven, Connecticut), 1948, pp. 219–331.Google Scholar
  7. 7.
    J. W. Gibbs, ibid., p. 219.Google Scholar
  8. 8.
    J. W. Gibbs, ibid., p. 234.Google Scholar
  9. 9.
    J. W. Gibbs, ibid., p. 223.Google Scholar
  10. 10.
    J. W. Gibbs, ibid., p. 266.Google Scholar
  11. 11.
    J. W. Gibbs, ibid., p. 253.Google Scholar
  12. 12.
    J. W. Gibbs, ibid., p. 254.Google Scholar
  13. 13.
    J. W. Gibbs, ibid., p. 300.Google Scholar
  14. 14.
    E. A. Guggenheim, Trans. Faraday Soc. 36: 397 (1940).CrossRefGoogle Scholar
  15. 15.
    S. Ono and S. Kondo, in: Encyclopedia of Physics, Vol. X, S. Flügge (ed.). Springer-Verlag (Berlin-Göttingen-Heidelberg), 1960, p. 144.Google Scholar
  16. 16.
    I. Langmuir, J. Am. Chem. Soc. 39: 1848 (1917).CrossRefGoogle Scholar
  17. See also N. K. Adam, The Physics and Chemistry of Surfaces, Oxford University Press (London), 1941.Google Scholar
  18. 17.
    W. D. Harkins, The Physical Chemistry of Surface Films, Reinhold Publishing Corp. (New York), 1952.Google Scholar
  19. 18.
    C. Herring, in: Structure and Properties of Solid Surfaces, R. Gomer and C. S. Smith (eds.). University of Chicago Press (Chicago), 1953, Chapter IGoogle Scholar
  20. 19.
    W.W. Mullins, in: Metal Surfaces, Amtncdin Society for Metals, 1963, Chapter 2.Google Scholar
  21. 20.
    N. Cabrera, Surface Science 2: 320 (1964).CrossRefGoogle Scholar
  22. 21.
    J. W. Cahn and J. E. Milliard, Acta Met. 7: 221 (1959).CrossRefGoogle Scholar
  23. 22.
    R. S. Hansen, J. Phys. Chem. 66: 410 (1962).CrossRefGoogle Scholar
  24. 23.
    C. Herring, Phys. Rev. 82: 87 (1951).CrossRefGoogle Scholar
  25. 24.
    S. Ono and S. Kondo, op. cit., p. 152.Google Scholar
  26. 25.
    R. Shuttleworth, Proc. Phys. Soc. (London) A63: 444 (1950).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • P. L. de Bruyn
    • 1
  1. 1.Department of MetallurgyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations