Application of X-Ray Topography to the Characterization of Semiconductor Surface Layers

  • P. Wang
  • F. X. Pink
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 7a)


Many of the physical properties of solids depend to a significant extent on the perfection of the surface-layer structure, and x-ray studies provide valuable information about structural perfection both in bulk and at the surface of crystals. X-ray diffraction topography is concerned with variations in the direction and/or intensities of x-rays that have been diffracted by crystals. From these variations the defect structure of the crystal may be examined. X-ray reflection techniques have found very useful applications in studying structural defects introduced in the surface layers by processing, especially by high-temperature treatment. In this chapter, x-ray transmission and reflection topography methods applicable to surface study are described, with emphasis on surface-layer defects in silicon crystals used in the fabrication of microelectronic devices or circuits.


Tilt Angle GaAs Substrate Photographic Plate Bragg Geometry Silicon Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Lang, Brit J. Appl Phys. 14, 904 (1963).CrossRefGoogle Scholar
  2. 2.
    I. A. Blech, E. S. Meiran, and H. Sello, Appl. Phys.Letters 7, 176 (1965).CrossRefGoogle Scholar
  3. 3.
    J. K. Howard and R. D. Dobrott, Appl Phys. Letters 8, 107 (1965)Google Scholar
  4. 4.
    J. K. Howard, J. Electro. chem.Soc. 113, 567(1966). CrossRefGoogle Scholar
  5. 4a.
    J. K. Howard and R. H. Cox, The Crystalline Perfection of Melt-Grown GaAs Substrates and Ga(As,P) Epitaxial Deposits, Advances in X-Ray Analysis, G. R. Mollett, M. J. Fay, and W. M. Mueller, eds., Plenum Press, New York (1966) pp. 35–50.Google Scholar
  6. 5.
    E. S. Meieran, J.Electrochem. Soc. 114, 292 (1967).CrossRefGoogle Scholar
  7. 6.
    T. B. Light, M. Berkenbht, and A. Reisman, to appear in J. Electrochem. Soc. Google Scholar
  8. 7.
    R. D. Deslattes and B. Paretzkin, paper presented at the Symposium on Trace Characterization - Chemical and Physical, Oct. 1966.Google Scholar
  9. 7a.
    J. B. Newkirk, Trans. AIME 215, 483(1959). Google Scholar
  10. 8.
    J. B. Newkirk, Phys. Rev. 110, 1465 (1958).CrossRefGoogle Scholar
  11. 9.
    J. B. Newkirk, J. D. Young, and J. P. Spencer, J. Appl Phys. 35, 1362 (1964).CrossRefGoogle Scholar
  12. 10.
    J. Tomiser and P. Skalieky, Acta Physica Austriaca 26, 373 (1966).Google Scholar
  13. 11.
    F. C. Frank, B. R. Lawn, and A. R. Lang, Proc. Roy. Soc. A 301, 239 (1967).CrossRefGoogle Scholar
  14. 12.
    E. M. Juleff and A. G. LaPierre, Intern. J. Electronics 20, 272 (1966).Google Scholar
  15. 13.
    E. M. Juleff, A. G. LaPierre, and R. G. Wolfson, The Analysis of Berg-Barrett Skew Reflections and Their Applications in the Observation of Process-Induced Imperfections in (111) Silicon Wafers, Advances in X-Ray Analysis, Vol. 10, J. B. Newkirk and G. R. Mallett, eds.. Plenum Press, New York (1967) pp. 173–184.CrossRefGoogle Scholar
  16. 14.
    R. W. James, The Optical Principles of Diffraction by X-Rays, Bell and Sons, London (1954), pp. 60–62.Google Scholar
  17. 15.
    B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Co., Reading, Mass. (1956), p. 267.Google Scholar
  18. 16.
    G. Dionne, J. Appl Phys. 38, 4095 (1967).Google Scholar
  19. 17.
    K. A. Carlson and R. Wegener, J. Appl Phys. 32, 125 (1961).CrossRefGoogle Scholar
  20. 18.
    S. B. Austerman and J. B. Newkirk, Proc. 15th Annual Conference on the Applications of X-Ray Analysis, U.K. Bonse, M. Hart, and J. B. Newkirk, eds.Google Scholar
  21. 19.
    E. D. Jungbluth, private communication.Google Scholar
  22. 20.
    R. Berkstresser and F. X. Pink, Intern. J. Electronics 23, 443 (1968).Google Scholar
  23. 21.
    U. Bonse and E. Kappler, Z. Naturforsch. 13a, 348 (1958).Google Scholar
  24. 22.
    M. Renninger, in: Crystallography and Crystal Perfection, G. N. Ramachandran, ed., Academic Press, New York (1963), p. 146.Google Scholar

Additional Suggested References For X-Ray Diffraction Topography

  1. J. Chikawa and J. B. Newkirk, “Effects of Trace Impurities on X-Ray Diffraction,” in: Trace Characterization, Chemical and Physical, W. W. Meinke and B. F. Scribner, eds., National Bureau of Standards Monograph 100, Washington, D.C. (April 1967).Google Scholar
  2. W. W. Webb, “X-Ray Diffraction Topography,” in: Direct Observation of Imperfections in Crystals, J. B. Newkirk and J. H. Wernick, eds., John Wiley (Interscience), New York (1962).Google Scholar
  3. U. K. Bonse, M. Hart, and J. B. Newkirk, “X-Ray Diffraction Topography,” in: Advances in X-Ray Analysis Vol. 10, J. B. Newkirk and G. R. Mallett, eds. Plenum Press, New York (1967). An excellent general review.Google Scholar
  4. S. B. Austerman and J. B. Newkirk, “Experimental Procedures in X-Ray Diffraction Topography,” Ibid. For experimental procedures.Google Scholar
  5. A. Authier, “Contrast of Dislocation Images in X-Ray Transmission Topography,” Ibid. For diffraction theory.Google Scholar
  6. G. H. Schwuttke and J. K. Howard, X-Ray Stress Topography of Thin Films on Germanium and Silicon, AFCRL-67–0564 Scientific Report No. 2, 1967. SOT technique, but very readable.Google Scholar
  7. G. N. Ramachandran, Crystallography and Crystal Perfection, Academic Press, New York (1963) Excellent background reading.Google Scholar
  8. A. R. Lang, J. Appl. Phys. 29, 597 (1958); 30, 1748 (1959).CrossRefGoogle Scholar

Important Early Papers On X-Ray Diffraction Topography: X-Ray Transmission Topography (Scanning Transmission and SOT). Laue Geometry

  1. G. H. Schwuttke, J. Electrochem. Soc. 109, 27 (1962)CrossRefGoogle Scholar
  2. G. H. Schwuttke, J. Appl. Phys. 33, 1538 (1962); 36, 2712 (1965).CrossRefGoogle Scholar

X-Ray Reflection Topography (Berg-Rarrett Method). Bragg Geometry

  1. J. B. Newkirk,Phys. Rev. 110,1465 (1958)CrossRefGoogle Scholar
  2. J. B. Newkirk, Trans. AIME 215, 482 (1959).Google Scholar

Anomalous Transmission (Borrmann Method). Laue Geometry

  1. G. Borrmann, W. Hartwig, and H. Irmler, Z. Naturforsch. 13A, 423 (1958).Google Scholar
  2. G. Borrmaam, Physik 15, 508 (1959).CrossRefGoogle Scholar

Double-Crystal Topography. Bragg Geometry

  1. U. Bonse, in: Direct Observation of Imperfection in Crystals, J. B. Newkirk and J. H. Wemick, eds., John Wiley (Interscience) New York (1962).Google Scholar
  2. U. Bonse and E. Kappler, Z. Naturforsch. 13A, 348, (1958).Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1969

Authors and Affiliations

  • P. Wang
    • 1
  • F. X. Pink
    • 1
  1. 1.Semiconductor DivisionSylvania Electric Products, Inc.WoburnUSA

Personalised recommendations