Advertisement

Indirect Atomic-Absorption Spectrometric Methods of Analysis

  • David F. Boltz
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 7a)

Abstract

The direct determination of certain metals is impractical because of oxide formation in the use of flame atomizers, and the direct determination of nonmetals is often not feasible because either a suitable source of incident radiant energy is unavailable or the absorption lines are in the vacuum-ultraviolet region. Indirect methods are being developed to circumvent some of these difficulties. The general technique involves the formation of a complex consisting of the desired constituent and a metal which can be determined directly by atomic-absorption spectrometry. It is important that the ratio of desired constituent to metal be stoichiometric and it is advantageous if this complex is extractable from aqueous solution with an immiscible organic solvent. Specific indirect methods for germanium, phosphorus, silicon, nitrate, thiocyanate, etc., will be discussed.

Keywords

Methyl Isobutyl Ketone Isobutyl Ketone Lead Sulfate Molybdophosphoric Acid Isobutyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Slavin, Atomic Absorption Newsletter 6, 9 (1967).Google Scholar
  2. 2.
    G. D. Christian and F. J. Feldman,.Anal Chim, Acta 40, 173 (1968).CrossRefGoogle Scholar
  3. 3.
    A. M. Bond and T. A. O’Donnell Anal Chem. 40, 560 (1968).CrossRefGoogle Scholar
  4. 4.
    U. Westerlund-Helmerson, Atomic Absorption Newsletter 5, 97 (1966).Google Scholar
  5. 5.
    R. Danchik and D. F. Boliz,Anal Analytical Letters 1, 901 (1968).CrossRefGoogle Scholar
  6. 6.
    D. A. Roe, P. S. Miller and L. Lutwak, Anal. Biochem. 15, 313 (1966).CrossRefGoogle Scholar
  7. 7.
    S. Rose and D. F. Boltz, Anal Chim. Acta 44, 239 (1969).CrossRefGoogle Scholar
  8. 8.
    W. S. Zauggand R. J. Knox Anal Chem. 38,1759 (1966).CrossRefGoogle Scholar
  9. 9.
    T. Kumamaru, Y. Otani, and Y. Yamamoto, Bull Chem. Soc. Japan 40,429 (1967).CrossRefGoogle Scholar
  10. 10.
    G. F. Kirkbright, A. M. Smith, and T. S. WestAnalyst 92, 411 (1967).CrossRefGoogle Scholar
  11. T. R. Hurford and D. F. Boltz,Anal Chem. 40 (1968).Google Scholar
  12. 12.
    R. J. Jakubiec and D. F. Boltz Anal. Chem. 41, 78 (1969).CrossRefGoogle Scholar
  13. 13.
    R. J. Jakubiec and D. F. Boltz, Analytical Letters 1, 347 (1968).CrossRefGoogle Scholar
  14. 14.
    G. F. Kirkbright, A. M. Smith, and T. S. West, Analyst 93, 292 (1968).CrossRefGoogle Scholar
  15. 15.
    R. Danchik and D. F. Boltz Anal Chem. 40, 2215 (1968).CrossRefGoogle Scholar
  16. 16.
    T. Kumamatu, Y. Otani, and Y. Yamamoto, Bull Chem. Soc. Japan 40,429 (1967).CrossRefGoogle Scholar
  17. 17.
    W. J. Collinson and D. F. Boltz, Anal. Chem. 40,1896 (1968).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the society for Applied Spectroscopy 1969

Authors and Affiliations

  • David F. Boltz
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations