Near Infrared Spectroscopy in Structural Problems of Biochemistry

  • Sue Hanlon
  • Irving M. Klotz
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 6)


Near infrared spectra have found biochemical applications in equilibrium and in kinetic problems. The region of the spectrum between 1.4 and 1,6 μ is especially useful for following transformations of —NH or —OH groups. The particular chemical state of these groups can be readily identified by the positions of the absorption maxima due to the first overtone of their stretching vibrations. Relative proportions of species can be evaluated from extinction coefficients which can be accurately determined. The equilibrium state of the peptide unit in a number of synthetic polyamino acids (poly-L-alanine, poly-l-leucine, poly-l-methionine, and polybenzyl- L-glutamate) has been followed as a function of solvent composition under conditions where the transitions in other physical properties of these polymers have been interpreted as simple peptide hydrogen-bonded helix to coil transitions. Spectral data demonstrate that these conversions involve protonated peptide species and are far more complicated than has hitherto been assumed.


Near Infrared Spectroscopy Peptide Residue Inert Solvent Polyglutamic Acid Methyl Morpholine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.M. Klotz and J.M. Franzen, J. Am. Chem. Soc. 84:3461 (1962).CrossRefGoogle Scholar
  2. 2.
    I.M. Klotz, Federation Proc. 24 III: S-24 (1965).Google Scholar
  3. 3.
    L. Pauling and R.B. Corey, Proc. Natl. Acad. Sci. U.S. 37:729 (1951).Google Scholar
  4. 4.
    P. Doty, J.H. Bradbury, and A.M. Holtzer, J. Am. Chem. Soc. 78:947 (1956).CrossRefGoogle Scholar
  5. 5.
    P. Doty and J.T. Yang, J. Am. Chem. Soc. 78:499 (1956).Google Scholar
  6. 6.
    W. Moffitt, J. Chem. Phys. 25:467 (1956).CrossRefGoogle Scholar
  7. 7.
    W. Moffitt and J.T. Yang, Proc. Natl. Acad. Sci. U.S. 42:596 (1956).Google Scholar
  8. 8.
    S. Hanlon and I.M. Klotz, Biochem. 4:37 (1965).CrossRefGoogle Scholar
  9. 9.
    S. Hanlon, Biochem. 5:2049 (1966).CrossRefGoogle Scholar
  10. 10.
    I.M. Klotz, S.F. Russo, S. Hanlon, and M. A. Stake, J. Am. Chem. Soc. 86:4774 (1964).CrossRefGoogle Scholar
  11. 11.
    A. Berger, A. Loewenstein, and S. Meiboom, J. Am. Chem. Soc. 81:62 (1959).CrossRefGoogle Scholar
  12. 12.
    I.M. Klotz and B. H. Frank, J. Am. Chem. Soc. 87:2721 (1965).CrossRefGoogle Scholar
  13. 13.
    B.H. Leichtling and I. M. Klotz, Biochem. 5:4026 (1966).CrossRefGoogle Scholar
  14. 14.
    I.M. Klotz and P.L. Feidelseit, J. Am. Chem. Soc. 88:5103 (1966).CrossRefGoogle Scholar
  15. 15.
    J.S. Scarpa, D.D. Mueller, and I.M. Klotz, J. Am. Chem. Soc. 89:6024 (1967).CrossRefGoogle Scholar
  16. 16.
    A. Hvidt and K. Linderstrom-Lang, Biochim. Biophys. Acta 14:574 (1954).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1968

Authors and Affiliations

  • Sue Hanlon
    • 1
  • Irving M. Klotz
    • 2
  1. 1.Department of Biological Chemistry, College of MedicineUniversity of IllinoisChicagoUSA
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations