Advertisement

Accelerator Systems for Activation Analysis—A Comparative Survey

  • J. R. Vogt
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 6)

Abstract

Accelerator systems for neutron activation analysis have become increasingly common in recent years. Some of these are simple systems designed specifically for activation analysis, while others are primarily sophisticated instruments for nuclear physics research, which may be adapted for the activation method. Most of these accelerators have used the radio frequency or Penning ion sources for deuteron production. Recently, however, increased attention has been focused on the Dio-Plas- matron ion source, which is capable of producing much larger beam currents. The beam from the Duo-Plasmatron ion source can be magnetically and electrostatically analyzed to produce an intense monatomic beam at the target.

Keywords

Neutron Flux Neutron Yield Sulfur Hexafluoride Deuteron Beam Graaff Accelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Turner, Anal. Chem. 28:1457 (1956).CrossRefGoogle Scholar
  2. 2.
    V.P. Guinn and C.D. Wagner, Anal. Chem. 32:317 (1960).CrossRefGoogle Scholar
  3. 3.
    G. J. Atchison and W. H. Beamer, Anal. Chem. 28:237 (1956).CrossRefGoogle Scholar
  4. 4.
    W. Buechner, Rev. Sei. Instr. 18:764 (1947).Google Scholar
  5. 5.
    J.D. Cockcroft and E.T.S. Walton, Proc. Roy. Soc. (London) A136:619 (1932).Google Scholar
  6. 6.
    P.G. Ashbaugh, D.W. McAdam, and M.F. James, Report No. AECL-2183, Chalk River Nuclear Laboratories, Chalk River, Ontario (1965).Google Scholar
  7. 7.
    C.D. Moak, H. Reese, Jr., and W. M. Good, Nucleonics 9 (3):18 (1951).Google Scholar
  8. 8.
    J.R. Vogt, W.D. Ehmann, and M.T. McEllistrem, Int. J. Appl, Radiation Isotopes 16:573 (1965).CrossRefGoogle Scholar
  9. 9.
    J.D. Gow and J.S. Foster, Jr., Rev. Sei. Instr. 24:606 (1953).CrossRefGoogle Scholar
  10. 10.
    W.L. Bronner, K.W. Ehlers, W.W. Eukel, H.S. Gordon, R.C. Marker, F. Voelker, and R.W. Fink, Nucleonics 17 (1):94 (1959).Google Scholar
  11. 11.
    M. vonArdeene, Tabellen der Elektroneuphysik lonenphysik und Ubermikroskopie, Deutscher Verlag der Wissenschaften, Berlin (1956).Google Scholar
  12. 12.
    C.D. Moak, H.E. Banta, J.N. Thurston, J.W. Johnson, and R.F. King, Rev. Sei. Instr. 30:694 (1959).CrossRefGoogle Scholar
  13. 13.
    J R. Vogt, U.S. Atomic Energy Commission Report No. ORO-2670–10 (1966).Google Scholar
  14. 14.
    O.U. Anders and D. W. Briden, Anal. Chem. 36:287 (1964).CrossRefGoogle Scholar
  15. 15.
    E.L. Steele and W.W. Meinke, Anal. Chem. 34:185 (1962).CrossRefGoogle Scholar
  16. 16.
    F. A. Iddings, Anal. Chim. Acta 31:206 (1964).CrossRefGoogle Scholar
  17. 17.
    D.F. Rhodes and W.E. Mott, Anal. Chem. 34:1507 (1962).CrossRefGoogle Scholar
  18. 18.
    A. Volborth, Fortschr. Mineral. 43:10 (1966).Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1968

Authors and Affiliations

  • J. R. Vogt
    • 1
  1. 1.Columbus LaboratoriesBattelle Memorial InstituteColumbusUSA

Personalised recommendations