Skip to main content

Vibrational Structuring in Optical Activity

  • Chapter
Book cover Developments in Applied Spectroscopy

Part of the book series: Developments in Applied Spectroscopy ((DAIS,volume 5))

Abstract

The role which vibration can play in the ultraviolet- visible-range manifestations of optical activity is considered. The rotatory strength for individual vibronic bands as well as the rotatory strength integrated over all vibrational structure is developed. Rotatory strength of mixed sign appears as the analog of mixed polarization in ordinary absorption. Such developments can be carried out within the Born-Oppenheimer adiabatic approximation or in a manner appropriate to pseudo-Jahn-Teller effects. It can be shown that the study of vibronic structuring in circular dichroism, for example, can materially aid the assignment of vibrations, the assessment of the degree of “forbidden” character, the identification of “hot bands,” andthe analysis of strong, intermediate, and weak vibronic coupling with near-degenerate electronic levels. Some experimental examples are considered.

The material contained in the work has been published previously in: O. E. Weigang, Jr., J. Chem. Phys. 42:2244 (1965); 43:71 (1965); 43:3609 (1965). Permission for republication granted by the Journal of Chemical Physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kuhn and H. L, Lehmann, Z. Physik. Chem. (Leipzig) B 18: 34 (1932).

    Google Scholar 

  2. H.B. Elkins and W. Kuhn, J. Am, Chem, Soc. 57: 296 (1935).

    Article  CAS  Google Scholar 

  3. W. Moffitt and A. Moscowitz, J. Chem, Phys. 30: 648 (1959).

    Article  CAS  Google Scholar 

  4. H. F. Hameka, J. Chem. Phys. 41: 3612 (1964).

    Article  CAS  Google Scholar 

  5. G. Holzwarth and P. Doty, J. Am, Chem, Soc. 87: 218 (1965).

    Article  CAS  Google Scholar 

  6. I, Tinoco, Jr„ J. Am. Chem, Soc. 86: 297 (1964).

    Article  CAS  Google Scholar 

  7. I. Tinoco, Jr„ R. W. Woody, and D. F, Bradley, J. Chem, Phys. 38: 1317 (1963).

    CAS  Google Scholar 

  8. A. D, Liehr, J. Phys, Chem. 68: 3629 (1964).

    Article  CAS  Google Scholar 

  9. E. Bunnenberg, C. Djerassi, K. Mislow, and A. Moscowitz, J. Am, Chem, Soc. 84: 2823 (1962).

    Article  CAS  Google Scholar 

  10. W. T. Simpson and D. L. Peterson, J. Chem, Phys. 26: 588 (1957).

    Article  CAS  Google Scholar 

  11. D.S. McClure, Can, J. Chem. 36:59 (1958)

    Google Scholar 

  12. E.G. McRae, Australian J, Chem, 14: 344, 354 (1965).

    Google Scholar 

  13. R. L. Fulton and M. Gouterman, J. Chem. Phys. 35: 1059 (1961).

    Article  CAS  Google Scholar 

  14. R, L. Fulton and M. Gouterman, J. Chem. Phys. 41: 2280 (1964).

    Article  CAS  Google Scholar 

  15. G. Herzberg and E. Teller, Z. Physik. Chem, B 21: 410 (1933).

    Google Scholar 

  16. H. Sponer and E. Teller, Rev, Mod. Phys. 13: 75 (1941).

    Article  CAS  Google Scholar 

  17. J, N, Murrell and J. Pople, Proc, Phys. Soc. (London) A 69: 245 (1956).

    Article  Google Scholar 

  18. J. A. Pople and J. Sidman, J. Chem. Phys. 27: 1270 (1957).

    Article  CAS  Google Scholar 

  19. A.D. Liehr, Can. J. Phys. 35: 1123 (1957).

    Article  CAS  Google Scholar 

  20. A.D. Liehr, Can. J. Phys. 36: 1588 (1957).

    Article  Google Scholar 

  21. A.D. Liehr, Z. Naturforsch. 13A: 311, 596 (1958).

    Google Scholar 

  22. A.C, Albrecht, J. Chem, Phys. 33: 156 (1960).

    Article  CAS  Google Scholar 

  23. O. E. Weigang, Jr,, J. Chem. Phys. 33: 892 (1960).

    Article  CAS  Google Scholar 

  24. A. Witkowski and W. Moffitt, J. Chem, Phys. 33: 872 (1960).

    Article  CAS  Google Scholar 

  25. L. S. Bartell and D. A. Kohl, J. Chem, Phys. 39: 3097 (1963).

    Article  CAS  Google Scholar 

  26. W. Moffitt, J. Chem, Phys. 22: 320 (1954).

    Article  CAS  Google Scholar 

  27. A. Moscowitz, in: C. Djerassi (ed.), Optical Rotatory Dispersion, McGraw-Hill Book Company, New York (1960).

    Google Scholar 

  28. J.G. Kirkwood, J. Chem, Phys. 5: 479 (1937).

    Article  CAS  Google Scholar 

  29. W. Kuhn and R. Rometsch, Holy, Chim, Acta 27:1080 (1944)

    Article  CAS  Google Scholar 

  30. L. S, Forster, A. Moscowitz, J. G. Berger, and K. Mislow, J. Am, Chem, Soc. 84: 4353 (1962).

    Article  CAS  Google Scholar 

  31. E.U. Condon, Rev, Mod. Phys. 9: 432 (1937).

    Article  CAS  Google Scholar 

  32. A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill Book Company, New York (1962).

    Google Scholar 

  33. O, E. Weigang, Jr„ J. Chem, Phys. 42:2244(1965), and references cited therein.

    Google Scholar 

  34. T. M. Dunn, private communication.

    Google Scholar 

  35. E. Gregorck and L. Goodman, Ohio State Symposium on Molecular Structure and Spectroscopy, Ohio State University (1965).

    Google Scholar 

  36. F. Almasy, J. Chim, Phys. 30: 634 (1933).

    CAS  Google Scholar 

  37. R. Shimada and L. Goodman, J. Chem. Phys. 42: 790 (1965).

    Article  CAS  Google Scholar 

  38. R. F. Ballard, S. Mason, and G. Vane, Discussions Faraday Soc. 43 (1963).

    Google Scholar 

  39. O.E. Weigang, Jr,, J. Chem. Phys. 41: 1435 (1964).

    Article  CAS  Google Scholar 

  40. C. Djerassi, H. Wolf, and E. Bunnenberg, J. Am, Chem, Soc. 84: 4552 (1962).

    Article  CAS  Google Scholar 

  41. L. Velluz and M. Legrand, Angew, Chem. 73: 603 (1961).

    Article  CAS  Google Scholar 

  42. K. M. Wellman and C. Djerassi, J. Am, Chem, Soc. 87: 60 (1965).

    Article  CAS  Google Scholar 

  43. C. Coulombeau and A. Rassat, Bull. Soc. Chim, France 2673 (1963).

    Google Scholar 

  44. S. Borg, M. Fetigon, and P. Laszlo, Bull. Soc. Chim. France 2310 (1963).

    Google Scholar 

  45. A. Moscowitz, K. M. Wellman, and C. Djerassi, Proc. Natl. Acad. Sci. U.S. 50:803 (1963)

    Google Scholar 

  46. P. Witz, H. Herrman, J. M. Leim, and G. Ourisson, Bull. Soc. Chico. France 1101 (1963)

    Google Scholar 

  47. L. Velluz, M. Legrand, and M. Grosjean, OpticalCircular Dichroism, Academic Press Inc., New York (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Chicago Section of the Society for Applied Spectroscopy

About this chapter

Cite this chapter

Weigang, O.E. (1966). Vibrational Structuring in Optical Activity. In: Pearson, L.R., Grove, E.L. (eds) Developments in Applied Spectroscopy. Developments in Applied Spectroscopy, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8694-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8694-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8696-4

  • Online ISBN: 978-1-4684-8694-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics