Vibrational Structuring in Optical Activity

  • Oscar E. WeigangJr.
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 5)


The role which vibration can play in the ultraviolet- visible-range manifestations of optical activity is considered. The rotatory strength for individual vibronic bands as well as the rotatory strength integrated over all vibrational structure is developed. Rotatory strength of mixed sign appears as the analog of mixed polarization in ordinary absorption. Such developments can be carried out within the Born-Oppenheimer adiabatic approximation or in a manner appropriate to pseudo-Jahn-Teller effects. It can be shown that the study of vibronic structuring in circular dichroism, for example, can materially aid the assignment of vibrations, the assessment of the degree of “forbidden” character, the identification of “hot bands,” andthe analysis of strong, intermediate, and weak vibronic coupling with near-degenerate electronic levels. Some experimental examples are considered.


Circular Dichroism Optical Activity Symmetric Mode Vibrational Structure Rotatory Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kuhn and H. L, Lehmann, Z. Physik. Chem. (Leipzig) B 18: 34 (1932).Google Scholar
  2. 2.
    H.B. Elkins and W. Kuhn, J. Am, Chem, Soc. 57: 296 (1935).CrossRefGoogle Scholar
  3. 3.
    W. Moffitt and A. Moscowitz, J. Chem, Phys. 30: 648 (1959).CrossRefGoogle Scholar
  4. 4.
    H. F. Hameka, J. Chem. Phys. 41: 3612 (1964).CrossRefGoogle Scholar
  5. 5.
    G. Holzwarth and P. Doty, J. Am, Chem, Soc. 87: 218 (1965).CrossRefGoogle Scholar
  6. 6.
    I, Tinoco, Jr„ J. Am. Chem, Soc. 86: 297 (1964).CrossRefGoogle Scholar
  7. 7.
    I. Tinoco, Jr„ R. W. Woody, and D. F, Bradley, J. Chem, Phys. 38: 1317 (1963).Google Scholar
  8. 8.
    A. D, Liehr, J. Phys, Chem. 68: 3629 (1964).CrossRefGoogle Scholar
  9. 9.
    E. Bunnenberg, C. Djerassi, K. Mislow, and A. Moscowitz, J. Am, Chem, Soc. 84: 2823 (1962).CrossRefGoogle Scholar
  10. 10.
    W. T. Simpson and D. L. Peterson, J. Chem, Phys. 26: 588 (1957).CrossRefGoogle Scholar
  11. 11.
    D.S. McClure, Can, J. Chem. 36:59 (1958)Google Scholar
  12. 12.
    E.G. McRae, Australian J, Chem, 14: 344, 354 (1965).Google Scholar
  13. R. L. Fulton and M. Gouterman, J. Chem. Phys. 35: 1059 (1961).CrossRefGoogle Scholar
  14. 14.
    R, L. Fulton and M. Gouterman, J. Chem. Phys. 41: 2280 (1964).CrossRefGoogle Scholar
  15. 15.
    G. Herzberg and E. Teller, Z. Physik. Chem, B 21: 410 (1933).Google Scholar
  16. 16.
    H. Sponer and E. Teller, Rev, Mod. Phys. 13: 75 (1941).CrossRefGoogle Scholar
  17. 17.
    J, N, Murrell and J. Pople, Proc, Phys. Soc. (London) A 69: 245 (1956).CrossRefGoogle Scholar
  18. 18.
    J. A. Pople and J. Sidman, J. Chem. Phys. 27: 1270 (1957).CrossRefGoogle Scholar
  19. 19.
    A.D. Liehr, Can. J. Phys. 35: 1123 (1957).CrossRefGoogle Scholar
  20. 20.
    A.D. Liehr, Can. J. Phys. 36: 1588 (1957).CrossRefGoogle Scholar
  21. 21.
    A.D. Liehr, Z. Naturforsch. 13A: 311, 596 (1958).Google Scholar
  22. 22.
    A.C, Albrecht, J. Chem, Phys. 33: 156 (1960).CrossRefGoogle Scholar
  23. 23.
    O. E. Weigang, Jr,, J. Chem. Phys. 33: 892 (1960).CrossRefGoogle Scholar
  24. 24.
    A. Witkowski and W. Moffitt, J. Chem, Phys. 33: 872 (1960).CrossRefGoogle Scholar
  25. 25.
    L. S. Bartell and D. A. Kohl, J. Chem, Phys. 39: 3097 (1963).CrossRefGoogle Scholar
  26. 26.
    W. Moffitt, J. Chem, Phys. 22: 320 (1954).CrossRefGoogle Scholar
  27. 27.
    A. Moscowitz, in: C. Djerassi (ed.), Optical Rotatory Dispersion, McGraw-Hill Book Company, New York (1960).Google Scholar
  28. 28.
    J.G. Kirkwood, J. Chem, Phys. 5: 479 (1937).CrossRefGoogle Scholar
  29. 29.
    W. Kuhn and R. Rometsch, Holy, Chim, Acta 27:1080 (1944)CrossRefGoogle Scholar
  30. L. S, Forster, A. Moscowitz, J. G. Berger, and K. Mislow, J. Am, Chem, Soc. 84: 4353 (1962).CrossRefGoogle Scholar
  31. 31.
    E.U. Condon, Rev, Mod. Phys. 9: 432 (1937).CrossRefGoogle Scholar
  32. 32.
    A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill Book Company, New York (1962).Google Scholar
  33. 33.
    O, E. Weigang, Jr„ J. Chem, Phys. 42:2244(1965), and references cited therein.Google Scholar
  34. 34.
    T. M. Dunn, private communication.Google Scholar
  35. 35.
    E. Gregorck and L. Goodman, Ohio State Symposium on Molecular Structure and Spectroscopy, Ohio State University (1965).Google Scholar
  36. 36.
    F. Almasy, J. Chim, Phys. 30: 634 (1933).Google Scholar
  37. 37.
    R. Shimada and L. Goodman, J. Chem. Phys. 42: 790 (1965).CrossRefGoogle Scholar
  38. 38.
    R. F. Ballard, S. Mason, and G. Vane, Discussions Faraday Soc. 43 (1963).Google Scholar
  39. 39.
    O.E. Weigang, Jr,, J. Chem. Phys. 41: 1435 (1964).CrossRefGoogle Scholar
  40. 40.
    C. Djerassi, H. Wolf, and E. Bunnenberg, J. Am, Chem, Soc. 84: 4552 (1962).CrossRefGoogle Scholar
  41. 41.
    L. Velluz and M. Legrand, Angew, Chem. 73: 603 (1961).CrossRefGoogle Scholar
  42. 42.
    K. M. Wellman and C. Djerassi, J. Am, Chem, Soc. 87: 60 (1965).CrossRefGoogle Scholar
  43. 43.
    C. Coulombeau and A. Rassat, Bull. Soc. Chim, France 2673 (1963).Google Scholar
  44. 44.
    S. Borg, M. Fetigon, and P. Laszlo, Bull. Soc. Chim. France 2310 (1963).Google Scholar
  45. 45.
    A. Moscowitz, K. M. Wellman, and C. Djerassi, Proc. Natl. Acad. Sci. U.S. 50:803 (1963)Google Scholar
  46. 46.
    P. Witz, H. Herrman, J. M. Leim, and G. Ourisson, Bull. Soc. Chico. France 1101 (1963)Google Scholar
  47. 47.
    L. Velluz, M. Legrand, and M. Grosjean, OpticalCircular Dichroism, Academic Press Inc., New York (1965).Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1966

Authors and Affiliations

  • Oscar E. WeigangJr.
    • 1
  1. 1.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations