Advertisement

Simultaneous Gas Chromatography and Radioactivity Analysis: Instrumentation, Calibration, and Application

  • D. C. Nelson
  • R. C. Hawes
  • D. Paull
  • P. C. ResslerJr.
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 4)

Abstract

An instrument for simultaneous gas chromatography and radioactivity analysis is described. The ion chamber used for the radioactivity measurement is contained in the same temperature-controlled oven as the normal chromatography detector, and can be heated to over 300°C. Data are given for both programmed and isothermal column operation at high and low temperatures. Sensitivity, linearity of response, response times, and resolution are discussed for the entire system.

Keywords

Peak Height Mass Peak Chart Speed Geiger Counter Input Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Burr and F.C. Goodspeed, Role of benzene in the radiolysis of cyclohexane—benzene mixtures, J. Chem. Phys. 40 (5): 1433–1436 (1964).CrossRefGoogle Scholar
  2. 2.
    F. Cacace, Nucleonics 19s 45–50 (1961).Google Scholar
  3. 3.
    M. Castle, G. Blondin, and W. R. Nes, Guidance for the origin of the ethyl group of β-sitosterol. J. Am. Chem. Soc. 85: 3306–3308 (1963).CrossRefGoogle Scholar
  4. 4.
    H.E. Dobbs, J. Chromatog. 5: 32–7 (1961).CrossRefGoogle Scholar
  5. 5.
    H.J. Dutton, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March (1961).Google Scholar
  6. 6.
    T.B. Evans and J. E. Willard, J. Am. Chem. Soc. 78: 2908 (1956).CrossRefGoogle Scholar
  7. 7.
    M. E. Gardner and J.L. Barnes, Transients in Linear Systems, Vol. 1, John Wiley & Sons, Inc., New York (1961), pp. 262–263.Google Scholar
  8. 8.
    A.T. James and E. A. Piper, J. Chromatog. 5: 265 (1961).CrossRefGoogle Scholar
  9. 9.
    A. Karmen, L. Giuffrida, and R. L. Bowman, J. Lipid Res, 3: 44 (1962).Google Scholar
  10. 10.
    A. Karmen and J. Winkelman, J. Anal. Chem. 34: 1067–71 (1962).CrossRefGoogle Scholar
  11. 11.
    R.J. Kokes, H. Tobin, Jr., and P. H. Emmett, J. Am. Chem. Soc. 77: 5860 (1955).CrossRefGoogle Scholar
  12. 12.
    G. M. Levis and J. F. Meade, An alpha-hydroxy acid decarboxylase in brain microsomes, J. Biol. Chem. 239:1, 77–80 (1964).Google Scholar
  13. 13.
    A. Weissberger, Techniques of Organic Chemistry, Vol. 1, Part 4, Interscience, New York (1959), p. 3359.Google Scholar
  14. A. Weissberger, ibid., p. 3363.Google Scholar
  15. A. Weissberger, ibid., p. 3364.Google Scholar
  16. 16.
    I.M. Whittemore, Bio-Organic Chem. Quart. Rept. UCRL-9408: 49–50 (1960).Google Scholar
  17. 17.
    R. Wolfgang and C. F. Mackay, Nucleonics 16: 69–73 (1958).Google Scholar
  18. 18.
    R. Wolfgang and F.S. Rowland, Anal. Chem. 30: 903–906 (1958).CrossRefGoogle Scholar
  19. 19.
    J.Y. Yang and R. B. Ingalls, Tritium beta-decay induced reactions in the polystyrene fluff, J. Am. Chem. Soc. 85:3920–3923 (1963).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1965

Authors and Affiliations

  • D. C. Nelson
    • 1
  • R. C. Hawes
    • 1
  • D. Paull
    • 1
  • P. C. ResslerJr.
    • 1
  1. 1.Applied Physics CorporationMonroviaUSA

Personalised recommendations