Advertisement

Intramolecular NH ••• Halogen Hydrogen-Bond Strengths in Five- and Six-Membered Chelate Rings

  • P. J. Krueger
  • D. W. Smith
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 4)

Abstract

The fundamental symmetric and asymmetric NH2, NHD, and ND2 stretching vibrations are compared in o- and p-haloanilines, -benzylamines, and -benzamides in dilute solution. Ortho-substituted benzylamines exhibit rotational isomerism, with free NH2 groups and intramolecularIv-bonded NH2 groups. The cis—trans isomerism of the NHD group in mono-deuterated-o-haloanilines and o-benzamides indicates that the intramolecular NH··· X hydrogen-bond strength increases in the former in the order X = F < CI < Br < I, but that the reverse order holds for the latter (as well as for o-halobenzylamines). These results are discussed in terms of the halogen size, the halogen electronegativity, and the geometry of the chelate system. In mono-deutero-o-haloanilines, ND···X bonds appear to be weaker than NH···X bonds.

Keywords

Halogen Atom Chelate Ring Rotational Isomerism Relative Frequency Shift Frequency Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Krueger, Can. J. Chem., 40. 2300 (1962).CrossRefGoogle Scholar
  2. 2.
    H.H. Jaffe, J. Am. Chem. Soc., 79. 2373 (1957).CrossRefGoogle Scholar
  3. 3.
    P. von R. Schleyer and R. West, J. Am. Chem. Soc., 81, 3164 (1959).CrossRefGoogle Scholar
  4. 4.
    R. West, D. L. Powell, L. S. Whatley, M. K. T. Lee J. Am. Chem. Soc., 84. 3221 (1962).CrossRefGoogle Scholar
  5. 5.
    P.J. Krueger and H.D. Mettee, Can. J. Chem., 42, 326 (1964).CrossRefGoogle Scholar
  6. 6.
    O.R. Wulf, V. Liddel, and S.B. Hendricks, J. Am. Chem. Soc., 58, 2287 (1936).CrossRefGoogle Scholar
  7. 7.
    L. Pauling, J. Am. Chem. Soc.. 58, 94 (1936).CrossRefGoogle Scholar
  8. 8.
    A. W. Baker and W. W. Kaeding, J. Am. Chem. Soc., 81, 5904 (1959).CrossRefGoogle Scholar
  9. 9.
    H. Bourassa-Bataille, P. Sauvageau, and C. Sandorfy. Can J. Chem.. 41. 2240 (1963).CrossRefGoogle Scholar
  10. 10.
    E.A. Allan and L. W. Reeves, J. Phys. Chem., 67, 591 (1963).CrossRefGoogle Scholar
  11. 11.
    A.G. Moritz, Spectrochim. Acta, 16, 1176 (1960).CrossRefGoogle Scholar
  12. 12.
    A.G. Moritz, Spectrochim. Acta, 18, 671 (1962).CrossRefGoogle Scholar
  13. 13.
    G.D. Bagratishvili, G. V. Tsitsishvili, and K.A. Bezhashvili, Zhur. Fiz. Khim., 36, 2036 (1962).Google Scholar
  14. 14.
    A. N. Hambly and B. V. O#x2019;Grady, Chem. and Ind. (London) 15. 459 (1962).Google Scholar
  15. 15.
    A. N. Hambly and B. V. O#x2019;Grady, Australian J. Chem., 15. 626 (1962).CrossRefGoogle Scholar
  16. 16.
    P.J. Krueger, AppL Opt.. 1. 443 (1962).CrossRefGoogle Scholar
  17. 17.
    S. Califano and R. Moccia. Gazz. chim. ital.. 87. 805 (1957).Google Scholar
  18. 18.
    P.J. Krueger. Can. J. Chem., 42, 201 (1964).CrossRefGoogle Scholar
  19. 19.
    R.A. Nyquist, Spectrochim. Acta. 19, 1595 (1963).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1965

Authors and Affiliations

  • P. J. Krueger
    • 1
  • D. W. Smith
    • 1
  1. 1.University of AlbertaCalgaryCanada

Personalised recommendations