Skip to main content

The RF Discharge at Atmospheric Pressure and Its Use as an Excitation Source in Analytical Spectroscopy

  • Conference paper
Developments in Applied Spectroscopy

Part of the book series: Developments in Applied Spectroscopy ((DAIS,volume 3))

Abstract

Radio-frequency fields can be used to produce excitation of the spectral emission of various chemical species at low pressure, or at atmospheric pressure. The use of RF excitation under low pressure has a long history dating back to the works of J. J. Thompson in 1891. Successful results have been obtained since then in the excitation and measurements of samples in gaseous and solid form contained in electrodeless, evacuated glass vessels. The use in analytical spectroscopy of RF discharges of flamelike appearance occurring at atmospheric pressure is of more recent origin. This work is concerned with this type of discharge and presents a general review of the field, together with the results obtained with two RF discharges, one of 30 Mc and 250 W and the other of 2450 Mc and 2 kW. This last unit has been specially designed and constructed to be used on an optical bench in a manner similar to the usual spark and arc sources. From the several carrier gases studied, air, N2, O2, CO2, He, and H2, the last two were chosen for their relatively reduced background and for their ability to permit the excitation of numerous chemical species. Practically all compounds present in a dissociated state can be excited by the 2450-Mc discharge in helium as can be seen from the emission spectra of some 70 elements recorded thus far, producing atomic and molecular radiations. The RF discharge at atmospheric pressure possesses a high electron energy and a comparatively low thermal energy. Various procedures developed for the introduction of solid, liquid, and gaseous samples are discussed and the use of these procedures for analytical purposes are presented. The following chemical species have been investigated more closely with regard to quantitative measurement possibilities: Sn, Pb, Hg, B, Au, Cd, As, Sb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Asami and T. Hori, Nature 144:981 (1939).

    Article  CAS  Google Scholar 

  2. E. Bädäräu, M. Giurgea, Gh. Giurgea, and A. T. H. Trutia, Spectrochim. Acta (1957), 441.

    Google Scholar 

  3. W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum, 32:688 (1961)

    Article  CAS  Google Scholar 

  4. L. Bloch and E. Bloch, Ann, Physique 8:397 (1927)

    Google Scholar 

  5. H. P, Broida and G. H, Morgan, Anal. Chem. 24:799 (1952).

    Article  CAS  Google Scholar 

  6. J. van Calker, Proc, IXth Colloquium Spectr, Intern. Lyons, 5–10 June, 1961, p. 48 (Publ. Sept. 1962) G.A.M.S. Publisher.

    Google Scholar 

  7. C. L. Chakrabarti, R. J. Magee, and C. L. Wilson, Talanta 9:43 (1962).

    Article  Google Scholar 

  8. C.L. Chakrabarti, R.J. Magee, and C.L. Wüson, Talanta 9:639 (1962).

    Article  CAS  Google Scholar 

  9. J.D. Cobine and D. A. Wilbur, Electronics (June, 1951).

    Google Scholar 

  10. J.D. Cobine and D.A. Wilbur, J. Appl. Phys. 22:835 (1951).

    Article  Google Scholar 

  11. C. Corliss, W. Bozman, and F. Westfall, J. Opt. Soc. Am. 43:398 (1953).

    Article  CAS  Google Scholar 

  12. G.D. Cristescu and R. Grigorovici, Bull. Soc. Roum. Phys. 42:3 (1941).

    Google Scholar 

  13. H. Dunnken, W. Mikkeleit, and W. Kniesche, Acta Chim. Hung. 33:67 (1962)

    Google Scholar 

  14. L. Dunoyer, Compt. rend. 173:472 (1921).

    CAS  Google Scholar 

  15. L. Dunoyer, J. Physique 3:261 (1922).

    CAS  Google Scholar 

  16. L. Dunoyer, Compt. rend. 176:953 (1923).

    CAS  Google Scholar 

  17. E. Fenner, Spectrochim. Acta 1:164 (1941).

    Article  Google Scholar 

  18. R.G. Fowler, in “Gas Discharges II,” Encyclopedia of Physics, S. Flügge (ed.) (Springer, Berlin, 1956).

    Google Scholar 

  19. S. Frisch and E. Schreider, Izvest. Akad. Nauk SSSR, Ser. Fiz. 13:464 (1949).

    Google Scholar 

  20. A. Gatterer and V. Frodl, Ric. Spettroscopi. 1:201 (1946).

    CAS  Google Scholar 

  21. A. Gatterer, Spectrochim. Acta 3:214 (1948).

    Article  CAS  Google Scholar 

  22. A. Gatterer, Coll. Intern. Spectrographie Strasbourg, 12–14 Oct., 1950, Publ. G.A.M.S. pp. 173- 179.

    Google Scholar 

  23. A. Gatterer, Mikrochemie and Mikrochim. Acta 36/37:476 (1951).

    Article  Google Scholar 

  24. V.B. Gerard, J. Sci. Instrum. 39:217 (1962).

    Article  Google Scholar 

  25. W. Gerlach and E. Schweitzer, Z. anorg. allgem. Chem. 195:255 (1931).

    Article  CAS  Google Scholar 

  26. Goroncy and Urban, Z. anorg. allgem. Chem. 211:28 (1933).

    Article  CAS  Google Scholar 

  27. R. Grigorovici and G. Cristescu, Optika i Spektroskopiia 6:85 (1959).

    Google Scholar 

  28. K. Heinrich, Electrotech. Z. 50:1655 (1929).

    Google Scholar 

  29. R. C. Hughes and R. Mavrodineanu, Spectrographic Analysis. U.S.A. Patent Application No, 154- 10–468, 1963.

    Google Scholar 

  30. R. Ishida, Repts. Govt. Chem. Ind. Research Inst., Tokyo 51:342 (1956).

    CAS  Google Scholar 

  31. G. Joos, “Excitation of Spectra,” in Handbook of Experimental Physics, Vol. 21, Wien and Harms (ed.) (Akademische Verlagsgesellschaft, Leipzig, 1927), p. 197.

    Google Scholar 

  32. V. Kapicka, Spisy prirodovedecke fak. Univ. Brno (1961), 269.

    Google Scholar 

  33. R. E. Keller and L. Smith. Anal. Chem. 24:796 (1952).

    Article  CAS  Google Scholar 

  34. F. A. Korolev and Zheenbaev, Izvest. Vysshikh Ucheb. Zabedenii 1959, No. 5, 134.

    Google Scholar 

  35. R. Mavrodineanu and H. Boiteux, “L’Analyse spectrale quantitative par la flamme” (Masson, Paris, 1954), p. 26.

    Google Scholar 

  36. R. Mavrodineanu and R. C. Hughes, Excitation in Radio-Frequency Discharges, Xth Colloquium Spectroscopicum Internationale, June 18–22, 1962, Washington, D.C. Spectrochimica Acta 19:1309 (1963).

    Article  CAS  Google Scholar 

  37. R. Mavrodineanu and R. C. Hughes, Èxcitation of Various Elements by Radio-Frequency Discharges—Potential Analytical Applications. East. Analytical Symposium, Nov. 14–16, 1962, New York, N.Y.

    Google Scholar 

  38. W. F. Meggers, J. Opt. Soc. Am. 38:7 (1948).

    Article  CAS  Google Scholar 

  39. G.D. Morgan, Science Prog. 41:22 (1953).

    CAS  Google Scholar 

  40. G. Potapenko, Z. anorg. allgem. Chem. 215:44 (1933).

    Article  CAS  Google Scholar 

  41. C. Roddy and B. Green. Electronics World (1961), 29 and 117.

    Google Scholar 

  42. W. Schmidt, Elektronische Rundschau 13:404 (1959).

    Google Scholar 

  43. O. Scholz. Chem. Ber. (1959), 497.

    Google Scholar 

  44. M. Servigne, P.G. de Montgareuil, and D. Dominé, Compt. rend. 242:2827 (1956).

    CAS  Google Scholar 

  45. A. L. Stolov, Uchenye Zapiski Kazan. Gosudarst, Univ. im. V. I. U’yanova-Lenina. Obscheuniv. Sbornik 116:118 (1956).

    Google Scholar 

  46. J.J. Thompson, Phil. Mag. 32:321, 445 (1891).

    Google Scholar 

  47. F.S. Tomkins and M. Fred, Report CC-2467, Dec. 18. 1944. Cited after Fred M., and Scribner, B. F., “Spectrochemical Methods” in Analytical Chemistry of The Manhattan Project. C.J. Rodden (ed.) (McGraw-Hill, New York, 1950), p. 615.

    Google Scholar 

  48. F.S. Tomkins and M. Fred, J. Opt. Soc. Am. 47:1087 (1957).

    Article  CAS  Google Scholar 

  49. G. Vaudet, Compt. rend. 185:1270 (1927).

    CAS  Google Scholar 

  50. C.S. White. Agardograph No. 25, 125 (1958).

    Google Scholar 

  51. C.S. White and W.R. Lovelace. II, Agardograph No. 25. 253 (1958).

    Google Scholar 

  52. J.G. Winans, Rev. Sci. Instr. 9:203 (1938).

    Article  CAS  Google Scholar 

  53. M. Yamamoto and S. Murayama, Japan J. Appl. Phys. 2:65 (1958).

    Article  Google Scholar 

  54. M. Zelikoff, P. H. Wyckoff, L. M. Aschenbrand, and R. S. Loomis, J. Opt. Soc. Am. 42:818 (1952).

    Article  CAS  Google Scholar 

  55. Z. Zheenbaev, Inzhenerno-Fizicheskii Zhurnal 11:44 (1959).

    Google Scholar 

  56. Z. Zheenbaev, Izvest. Vysshikh Ucheb. Zavendenii, Fiz. (1960), 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Chicago Section of the Society for Applied Spectroscopy

About this paper

Cite this paper

Mavrodineanu, R., Hughes, R.C. (1964). The RF Discharge at Atmospheric Pressure and Its Use as an Excitation Source in Analytical Spectroscopy. In: Forrette, J.E., Lanterman, E. (eds) Developments in Applied Spectroscopy. Developments in Applied Spectroscopy, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8688-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8688-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8690-2

  • Online ISBN: 978-1-4684-8688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics