Advertisement

The RF Discharge at Atmospheric Pressure and Its Use as an Excitation Source in Analytical Spectroscopy

  • R. Mavrodineanu
  • R. C. Hughes
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 3)

Abstract

Radio-frequency fields can be used to produce excitation of the spectral emission of various chemical species at low pressure, or at atmospheric pressure. The use of RF excitation under low pressure has a long history dating back to the works of J. J. Thompson in 1891. Successful results have been obtained since then in the excitation and measurements of samples in gaseous and solid form contained in electrodeless, evacuated glass vessels. The use in analytical spectroscopy of RF discharges of flamelike appearance occurring at atmospheric pressure is of more recent origin. This work is concerned with this type of discharge and presents a general review of the field, together with the results obtained with two RF discharges, one of 30 Mc and 250 W and the other of 2450 Mc and 2 kW. This last unit has been specially designed and constructed to be used on an optical bench in a manner similar to the usual spark and arc sources. From the several carrier gases studied, air, N2, O2, CO2, He, and H2, the last two were chosen for their relatively reduced background and for their ability to permit the excitation of numerous chemical species. Practically all compounds present in a dissociated state can be excited by the 2450-Mc discharge in helium as can be seen from the emission spectra of some 70 elements recorded thus far, producing atomic and molecular radiations. The RF discharge at atmospheric pressure possesses a high electron energy and a comparatively low thermal energy. Various procedures developed for the introduction of solid, liquid, and gaseous samples are discussed and the use of these procedures for analytical purposes are presented. The following chemical species have been investigated more closely with regard to quantitative measurement possibilities: Sn, Pb, Hg, B, Au, Cd, As, Sb.

Keywords

Graphite Electrode Combustion Flame Optical Bench Tesla Coil Medium Quartz Spectrograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Asami and T. Hori, Nature 144:981 (1939).CrossRefGoogle Scholar
  2. 2.
    E. Bädäräu, M. Giurgea, Gh. Giurgea, and A. T. H. Trutia, Spectrochim. Acta (1957), 441.Google Scholar
  3. 3.
    W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum, 32:688 (1961)CrossRefGoogle Scholar
  4. 4.
    L. Bloch and E. Bloch, Ann, Physique 8:397 (1927)Google Scholar
  5. 5.
    H. P, Broida and G. H, Morgan, Anal. Chem. 24:799 (1952).CrossRefGoogle Scholar
  6. 6.
    J. van Calker, Proc, IXth Colloquium Spectr, Intern. Lyons, 5–10 June, 1961, p. 48 (Publ. Sept. 1962) G.A.M.S. Publisher.Google Scholar
  7. 7.
    C. L. Chakrabarti, R. J. Magee, and C. L. Wilson, Talanta 9:43 (1962).CrossRefGoogle Scholar
  8. 8.
    C.L. Chakrabarti, R.J. Magee, and C.L. Wüson, Talanta 9:639 (1962).CrossRefGoogle Scholar
  9. 9.
    J.D. Cobine and D. A. Wilbur, Electronics (June, 1951).Google Scholar
  10. 10.
    J.D. Cobine and D.A. Wilbur, J. Appl. Phys. 22:835 (1951).CrossRefGoogle Scholar
  11. 11.
    C. Corliss, W. Bozman, and F. Westfall, J. Opt. Soc. Am. 43:398 (1953).CrossRefGoogle Scholar
  12. 12.
    G.D. Cristescu and R. Grigorovici, Bull. Soc. Roum. Phys. 42:3 (1941).Google Scholar
  13. 13.
    H. Dunnken, W. Mikkeleit, and W. Kniesche, Acta Chim. Hung. 33:67 (1962)Google Scholar
  14. 14.
    L. Dunoyer, Compt. rend. 173:472 (1921).Google Scholar
  15. 15.
    L. Dunoyer, J. Physique 3:261 (1922).Google Scholar
  16. 16.
    L. Dunoyer, Compt. rend. 176:953 (1923).Google Scholar
  17. 17.
    E. Fenner, Spectrochim. Acta 1:164 (1941).CrossRefGoogle Scholar
  18. 18.
    R.G. Fowler, in “Gas Discharges II,” Encyclopedia of Physics, S. Flügge (ed.) (Springer, Berlin, 1956).Google Scholar
  19. 19.
    S. Frisch and E. Schreider, Izvest. Akad. Nauk SSSR, Ser. Fiz. 13:464 (1949).Google Scholar
  20. 20.
    A. Gatterer and V. Frodl, Ric. Spettroscopi. 1:201 (1946).Google Scholar
  21. 21.
    A. Gatterer, Spectrochim. Acta 3:214 (1948).CrossRefGoogle Scholar
  22. 22.
    A. Gatterer, Coll. Intern. Spectrographie Strasbourg, 12–14 Oct., 1950, Publ. G.A.M.S. pp. 173- 179.Google Scholar
  23. 23.
    A. Gatterer, Mikrochemie and Mikrochim. Acta 36/37:476 (1951).CrossRefGoogle Scholar
  24. 24.
    V.B. Gerard, J. Sci. Instrum. 39:217 (1962).CrossRefGoogle Scholar
  25. 25.
    W. Gerlach and E. Schweitzer, Z. anorg. allgem. Chem. 195:255 (1931).CrossRefGoogle Scholar
  26. 26.
    Goroncy and Urban, Z. anorg. allgem. Chem. 211:28 (1933).CrossRefGoogle Scholar
  27. 27.
    R. Grigorovici and G. Cristescu, Optika i Spektroskopiia 6:85 (1959).Google Scholar
  28. 28.
    K. Heinrich, Electrotech. Z. 50:1655 (1929).Google Scholar
  29. 29.
    R. C. Hughes and R. Mavrodineanu, Spectrographic Analysis. U.S.A. Patent Application No, 154- 10–468, 1963.Google Scholar
  30. 30.
    R. Ishida, Repts. Govt. Chem. Ind. Research Inst., Tokyo 51:342 (1956).Google Scholar
  31. 31.
    G. Joos, “Excitation of Spectra,” in Handbook of Experimental Physics, Vol. 21, Wien and Harms (ed.) (Akademische Verlagsgesellschaft, Leipzig, 1927), p. 197.Google Scholar
  32. 32.
    V. Kapicka, Spisy prirodovedecke fak. Univ. Brno (1961), 269.Google Scholar
  33. 33.
    R. E. Keller and L. Smith. Anal. Chem. 24:796 (1952).CrossRefGoogle Scholar
  34. 34.
    F. A. Korolev and Zheenbaev, Izvest. Vysshikh Ucheb. Zabedenii 1959, No. 5, 134.Google Scholar
  35. 35.
    R. Mavrodineanu and H. Boiteux, “L’Analyse spectrale quantitative par la flamme” (Masson, Paris, 1954), p. 26.Google Scholar
  36. 36.
    R. Mavrodineanu and R. C. Hughes, Excitation in Radio-Frequency Discharges, Xth Colloquium Spectroscopicum Internationale, June 18–22, 1962, Washington, D.C. Spectrochimica Acta 19:1309 (1963).CrossRefGoogle Scholar
  37. 37.
    R. Mavrodineanu and R. C. Hughes, Èxcitation of Various Elements by Radio-Frequency Discharges—Potential Analytical Applications. East. Analytical Symposium, Nov. 14–16, 1962, New York, N.Y.Google Scholar
  38. 38.
    W. F. Meggers, J. Opt. Soc. Am. 38:7 (1948).CrossRefGoogle Scholar
  39. 39.
    G.D. Morgan, Science Prog. 41:22 (1953).Google Scholar
  40. 40.
    G. Potapenko, Z. anorg. allgem. Chem. 215:44 (1933).CrossRefGoogle Scholar
  41. 41.
    C. Roddy and B. Green. Electronics World (1961), 29 and 117.Google Scholar
  42. 42.
    W. Schmidt, Elektronische Rundschau 13:404 (1959).Google Scholar
  43. 43.
    O. Scholz. Chem. Ber. (1959), 497.Google Scholar
  44. 44.
    M. Servigne, P.G. de Montgareuil, and D. Dominé, Compt. rend. 242:2827 (1956).Google Scholar
  45. 45.
    A. L. Stolov, Uchenye Zapiski Kazan. Gosudarst, Univ. im. V. I. U’yanova-Lenina. Obscheuniv. Sbornik 116:118 (1956).Google Scholar
  46. 46.
    J.J. Thompson, Phil. Mag. 32:321, 445 (1891).Google Scholar
  47. 47.
    F.S. Tomkins and M. Fred, Report CC-2467, Dec. 18. 1944. Cited after Fred M., and Scribner, B. F., “Spectrochemical Methods” in Analytical Chemistry of The Manhattan Project. C.J. Rodden (ed.) (McGraw-Hill, New York, 1950), p. 615.Google Scholar
  48. 48.
    F.S. Tomkins and M. Fred, J. Opt. Soc. Am. 47:1087 (1957).CrossRefGoogle Scholar
  49. 49.
    G. Vaudet, Compt. rend. 185:1270 (1927).Google Scholar
  50. 50.
    C.S. White. Agardograph No. 25, 125 (1958).Google Scholar
  51. 51.
    C.S. White and W.R. Lovelace. II, Agardograph No. 25. 253 (1958).Google Scholar
  52. 52.
    J.G. Winans, Rev. Sci. Instr. 9:203 (1938).CrossRefGoogle Scholar
  53. 53.
    M. Yamamoto and S. Murayama, Japan J. Appl. Phys. 2:65 (1958).CrossRefGoogle Scholar
  54. 54.
    M. Zelikoff, P. H. Wyckoff, L. M. Aschenbrand, and R. S. Loomis, J. Opt. Soc. Am. 42:818 (1952).CrossRefGoogle Scholar
  55. 55.
    Z. Zheenbaev, Inzhenerno-Fizicheskii Zhurnal 11:44 (1959).Google Scholar
  56. 56.
    Z. Zheenbaev, Izvest. Vysshikh Ucheb. Zavendenii, Fiz. (1960), 103.Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1964

Authors and Affiliations

  • R. Mavrodineanu
    • 1
  • R. C. Hughes
    • 1
  1. 1.Philips LaboratoriesA Division of North American Philips Co., Inc.New YorkUSA

Personalised recommendations