Spectrographic Determination of Trace Impurities in High-Purity Gold

  • A. J. Lincoln
  • J. C. Kohler
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 3)


A DC arc optical emission spectrographic method for the quantitative determination of 26 impurities in the range of 0.1 to 100 ppm is described. In this method, the gold sample is dissolved in aqua regia and the gold solution is then reduced by the addition of a weighed portion of high-purity graphite with the aid of hydrazine hydrate. The solution is evaporated to dryness and a 200-mg portion of the gold on graphite is pressed into a pellet which is burnt in a 20-A DC arc using a Stallwood Jet with an atmosphere of 70% argon—30% oxygen. The preparation of synthetic standards is described. Analytical lines used for the various elements, together with concentration ranges covered, are tabulated. Typical working curves for selected elements are shown. The overall precision for a total mean concentration of impurities at 280 ppm was found to be 5.1% expressed as coefficient of variation.


Hydrazine Hydrate Trace Impurity Chloroauric Acid Pellet Press Nickel Magnesium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Churchill, Ind. Eng. Chem., Anal. Ed. 16:653 (1944).CrossRefGoogle Scholar
  2. 2.
    W. J. Crook, Trans. Am. Inst. Min. Met. Eng. 152:255 (1943).Google Scholar
  3. 3.
    O. S. Duffendack and R. A. Wolfe, Ind. Eng. Chem., Anal. Ed. 10:161 (1938).CrossRefGoogle Scholar
  4. 4.
    A. L. Esterhuizen, J. S. A. Inst. Min. Met. 62:739 (1962).Google Scholar
  5. 5.
    E. M. Hammaker, G. W. Pope, G. Ishidaan, and F. Wagner, Appl. Spectroscopy 12:161 (1958).CrossRefGoogle Scholar
  6. 6.
    A. L. Kheifitz and L. N. Cherezova, Izvest. Akad. Nauk S.S.S.R., Ser. Fiz. 12:462 (1948).Google Scholar
  7. 7.
    A. J. Lincoln and J. C. Kohler, Anal. Chem. 34:1247 (1962).CrossRefGoogle Scholar
  8. 8.
    A. J. Lincoln and J. C. Kohler, Paper presented at Pittsburgh Conference on Analytical Chemistry (March 1962).Google Scholar
  9. 9.
    W. C. Pierce and N. H. Nachtrieb, Ind. Eng. Chem., Anal. Ed. 13:774 (1941).CrossRefGoogle Scholar
  10. 10.
    Y. D. Raikhbaum. Bull. Acad. Sci. U.R.S.S., Ser. Phys. pp. 246–9 (1941). (English Summary.)Google Scholar
  11. 11.
    Y. D. Raikhbaum, Zavddskaya Lab. 10:168 (1941).Google Scholar
  12. 12.
    R. L. Rupp, G. L. Klecak, and G. H. Morrison, Anal. Chem. 32:931 (1960).CrossRefGoogle Scholar
  13. 13.
    D. M. Shaw, O. Wickremashinghe, and G. Yip, Spectrochim. Acta 13:197 (1958).CrossRefGoogle Scholar
  14. 14.
    Spex Industries, Inc., based on independent designs developed by D. L. Mash (Bell Telephone Laboratories), and R. Susman (Republic Aviation Corporation).Google Scholar
  15. 15.
    B. J. Stallwood, J. Opt. Soc. Am. 44:171 (1954).CrossRefGoogle Scholar
  16. 16.
    A. Strasheim, D. B. de Vüliers. and D. Brink, J. S.A. Inst. Min. Met. 62:728 (1962).Google Scholar
  17. 17.
    R. E. Thiers. Appl. Spectroscopy 7:157–63 (1953).CrossRefGoogle Scholar
  18. 18.
    H. B. Warren and R. M. Thompson, Econ. Geol. 39:457 (1944).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1964

Authors and Affiliations

  • A. J. Lincoln
    • 1
  • J. C. Kohler
    • 1
  1. 1.Research and Development DivisionEngelhard Industries, Inc.NewarkUSA

Personalised recommendations