Identification of Chemical Species in a Plasma by Emission Spectroscopy

  • Elliott Raisen
  • Richard A. Carrigan
  • Victor Raziunas
  • W. A. Loseke
  • E. L. Grove
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 3)


Optical spectroscopy was used to identify the chemical species and the state of excitation of these species in argon, air, and nitrogen plasmas. The 2400 to 8800 A wavelength region was studied. Copper—tungsten and graphite—graphite electrodes were used. The species observed were Ar, Ar+, O, N, N2, N2 +, C, C2, and CN, the latter three being due to graphite electrodes. The major species found correlated with those species predicted from thermodynamic calculations in air. However, certain species as NO and O2 were not observed.


Graphite Electrode Argon Plasma Molecular Nitrogen Copper Anode Nitrogen Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Bates, editor, Atomic and Molecular Processes, Pure and Applied Physics 13:73, 1960.Google Scholar
  2. 2.
    W.S. Benedict and E.K. Plyler, National Bureau of Standards, Circular 523, 1954.Google Scholar
  3. 3.
    J.H. Bonin, G. F. Prince, and D.E. Taylor, Wright Air Development Center, Tech. Rept. 59–87, Part I, p. 99, July, 1959.Google Scholar
  4. 4.
    R. A. Carrigan, E. Raisen, and K. Schmude,”Experimental Studies to Determine the Chemical Species Prevalent in Plasmas of an Air Arc and the Boundary Layers Adjacent to Ablating Materials,” Wright Air Development Division, Tech. Rept. 60–359, 1960.Google Scholar
  5. 5.
    A. E. Douglas and P.M. Routly, Astrophys. J. 119:303 (1954).CrossRefGoogle Scholar
  6. 6.
    V. A. Fassel, W. A. Gordon, and R. W. Tabeling,”Emission Spectrometric Determination of Oxygen in Metals,” American Society Testing Materials, Special Technical Publication No. 221, p. 3, Philadelphia, 1958.Google Scholar
  7. 7.
    V.A. Fassel and R. W. Tabeling, Spectrochim. Acta 8:201 (1956).CrossRefGoogle Scholar
  8. 8.
    A. Gatterer, Grating Spectrum of Iron, Specola Vaticana, 1951.Google Scholar
  9. 9.
    A. G. Gaydon and H.G. Wolfhard, Proc. Roy. Soc. 201:570 (1950).CrossRefGoogle Scholar
  10. 10.
    D. H. Greenshields,”Spectrographic Temperature Measurements in Carbon-Arc-Powered Air Jet,” NASA Tech. Note D-169 (1959).Google Scholar
  11. 11.
    M. Guillery, Z. Phys. 42:121 (1927).CrossRefGoogle Scholar
  12. 12.
    G.R. Harrison, M.I.T. Wavelength Tables, (Wiley, New York, 1939).Google Scholar
  13. 13.
    J. Hilsenrath, M. Klein, and H. W. Woolley,”Tables of Thermodynamic Properties of Air Including Dissociation and Ionization from 1500 to 15,000 K,” AEDC—TR-59–20, p. 32 ff. (1959).Google Scholar
  14. 14.
    R.C. Johnson and H.G. Jenkins, Phil. Mag. 2:621 (1926).Google Scholar
  15. 15.
    Sidney Katz, Edwin J. Latos, and Elliott Raisen, Ind. and Eng. Chem. 52:289 (1960).CrossRefGoogle Scholar
  16. 16.
    P. W. Merrill, Linies of the Chemical Elements in Astronomical Spectra, Carnegie Institute of Washington, Publication No. 610, p. 23 (1958).Google Scholar
  17. 17.
    C. E. Moore,”A Multiplet Table of Astrophysical Interest,” Revised Ed., Contributions from the Princeton University Observatory, No. 20, 1945.Google Scholar
  18. C.E. Moore,”An Ultraviolet Multiplet Table,” National Bureau of Standards, Circular 488.Google Scholar
  19. 19.
    C. E. Moore,”Atomic Energy Levels,” National Bureau of Standards, Circular 467 (1949).Google Scholar
  20. 20.
    H.N. Olsen, J. Quant. Spect. Rad. Trans. 3:59 (1963).CrossRefGoogle Scholar
  21. 21.
    R.W. Pearse and A.G. Gaydon, The Identification of Molecular Spectra, 2nd Ed. (Wiley, New York. 1950).Google Scholar
  22. 21.
    W.J. Pearse,”Plasma Jet Temperature Study,” Optical Measurements of High Temperatures, compiled by P.J. Dickerman, (University of Chicago Press, Chicago, 1960) p. 125 ff.Google Scholar
  23. 23.
    B. Rosen,”Tables de constantes et données numériques,” Vol. 4, Donnees spectroscopiques concernant les molecules diatomiques, Hermann et Cie, Paris, 1951.Google Scholar
  24. 24.
    B. Rosen,”Tables de constantes et donnée numériques,” Vol. 5, Atlas de longueurs d’onde caractéristiques des bandes d’émission et d’absorption des molecules diatomiques, Hermann et Cie, Paris, 1952.Google Scholar
  25. 25.
    A.N. Saidel, V.K. Prokofiev, and S.M. Raiski,”Tables of Spectrum Lines,” VEB Verlag Technik (Berlin, 1955). English translation.Google Scholar
  26. 26.
    C.S. Stokes, W. W. Knipe, and L.A. Streng, J. Electrochem. Soc. 107:35 (1960).CrossRefGoogle Scholar
  27. 27.
    H. Y. Wachman and M. J. Linevsky,”Equilibrium Composition and Thermodynamic Properties of Air-Carbon Mixtures,” General Electric Co., T.l.S. No. R595D344, May, 1959.Google Scholar
  28. 28.
    H. Y. Wachman, M. J. Linevsky, and J.H. McGinn,”TheEffects of Electrode Contamination on the Properties of Air-Arc Plasmas,” General Electric Co., T.l.S. No. R595D427, September, 1959.Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1964

Authors and Affiliations

  • Elliott Raisen
    • 1
  • Richard A. Carrigan
    • 1
  • Victor Raziunas
    • 1
  • W. A. Loseke
    • 1
  • E. L. Grove
    • 1
  1. 1.IIT Research InstituteChicagoUSA

Personalised recommendations