Advertisement

Time-Resolution Spectroscopy

  • Francis D. Harrington
Conference paper
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 2)

Abstract

Time-resolution spectroscopy is concerned with the evaluation of temporal spectral variations in a radiating source, which is frequently a rapidly occurring optical phenomenon. The observational information required for this type of spectrum analysis is recorded either by film, using a time-resolving spectrograph, or by electronic sensing devices adapted to a standard spectrograph. The characteristics of these instruments and their applications to studies of exploding wires and nuclear explosions will be discussed in terms of the information desired and results obtained.

Keywords

Nuclear Explosion Spectral Radiance Color Temperature Naval Research Laboratory Vertical Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.L.O. Wadsworth, Astrophys. J. 3, 54 (1896).Google Scholar
  2. 2.
    W. F. Meggers and K. Burns, Bureau of Standards Scientific Papers, No. 18, 185 (1922).Google Scholar
  3. 3.
    W. E. Buck, High-speed turbine-driven rotating mirrors, Rev. Sci. Instr. 25, 115 (1954).CrossRefGoogle Scholar
  4. 4.
    B. Brixner, High-speed turbine-driven rotating mirrors: Notes on design, construction, and performance, Rev. Sci. Instr. 30, 1041 (1959).CrossRefGoogle Scholar
  5. 5.
    B. Brixner, A high-speed rotating mirror frame camera, SMPTE 59, 502 (1952).Google Scholar
  6. 6.
    R.J. Reithel et al., The current pause in an exploding wire, in W.G. Chace and H.K. Moore (eds.): Exploding Wires, Vol. 1, Plenum Press, Inc., New York (1959), p. 26.Google Scholar
  7. 7.
    K. R. Coleman, The photography of high temperature events, in H. Schardin and O. Helwich (eds.): Kurzzeitphotographie, IV Internationaler Kongress, Köln, 1958, Verlag Dr. Othmar Helwich, Darmstadt (1959), pp. 32–39.Google Scholar
  8. 8.
    A. E. Huston, Some developments inrotatingmirror cameras, Ibid., pp. 163–166.Google Scholar
  9. 9.
    R.W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).CrossRefGoogle Scholar
  10. 10.
    E. A. McLean et al.. Spectroscopic study of helium plasmas produced by magnetically driven shock waves, Physics of Fluids 3, 843 (1960).CrossRefGoogle Scholar
  11. 11.
    E.A. McLean, A.C. Kolb, and H.R. Griem, Visible precursor radiation in an electromagnetic shock tube, Physics of Fluids 4, 1055 (1961).CrossRefGoogle Scholar
  12. 12.
    B. R. Bronfin, E. A. McLean, and H. R. Griem, Absolute intensity calibration of a time-resolved spectrogram, J. Opt. Soc. Am. 52, 224 (1962).CrossRefGoogle Scholar
  13. 13.
    E. A. McLean, The measurement of transition probabilities using an electromagnetic shock tube, Proceedings of the Fourth Symposium on Temperature, Its Measurement and Control in Science and Industry, Reinhold Publishing Company, New York (1962).Google Scholar
  14. 14.
    Image Intensifier Symposium, U. S. Army Engineer Research and Development Laboratories, Corps of Engineers, Oct. 6–7 (1958).Google Scholar
  15. 15.
    M. M. Butslov et al., Electron-optical method for studying short-duration phenomena, in H. Schardin and O. Helwich (eds.): Kurzzeitphotographie, IV Internationaler Kongress, Köln, 1958, Verlag Dr. Othmar Helwich, Darmstadt (1959), pp. 230–242.Google Scholar
  16. 16.
    D. P. C. Thackeray, Current developments in the production and assessment of high intensity discharges. Ibid., pp. 123–129.Google Scholar
  17. 17.
    D.J. Lovell, H.S. Stewart, and S. Rosin. J. Opt. Soc. Am. 44, 799 (1954).CrossRefGoogle Scholar
  18. 18.
    T.C. Hall, Jr.; and W. Blacet, Separation of absorption spectra of NO2 and N2O4, J. Chem. Phys. 20, 1745 (1952).CrossRefGoogle Scholar
  19. 19.
    F. D. Harrington, An f/2.8 low-dispersion time-resolving grating spectrograph, NRL Report 5576, Feb. 7 (1961).Google Scholar
  20. 20.
    G. G. Milne, T. E. Putnam, and W. Staundenmaier, Interim report: High-speed streak spectrograph designs for the visual and ultraviolet regions, The University of Rochester, July 31 (1956).Google Scholar
  21. 21.
    F. D. Harrington, An f/6.6 high-dispersion time-resolving grating Spectrograph, NRL Report 5533, Sept. 23 (1960).Google Scholar
  22. 22.
    D. R. Bates and A. Damgaard, Phil. Trans. A242, 101 (1949).Google Scholar
  23. 23.
    F. D. Harrington, An f/3.5 medium-dispersiongrating spectrograph, NRL Report 5446, March 22 (1960).Google Scholar
  24. 24.
    D. R. Westervelt, E. W. Bennett, and A. Skumanich, Air fluorescence excited by gamma rays and X-rays, LASL Report J-10–546, Aug. 18 (1959).Google Scholar
  25. 25.
    F. D. Harrington, High-speed time-resolved spectroscopic instruments, in J. S. Courmey-Pratt, SMPTE (ed.)s Proceedings of the 5th International Congress on High-Speed Photography, New York (1962), pp. 277–282.Google Scholar
  26. 26.
    J.D. Craggs, Time-resolved spectroscopy. Nature 192, 4807, 1032 (1961).CrossRefGoogle Scholar
  27. 27.
    Brit. J. Appl. Phys. 13, 3. 98 (1962).Google Scholar

Copyright information

© Society for Applied Spectroscopy Chicago, Illinois 1963

Authors and Affiliations

  • Francis D. Harrington
    • 1
  1. 1.U. S. Naval Research LaboratoryUSA

Personalised recommendations