Anomalous Chemical Shifts in the Proton Magnetic Resonance Spectra of the Dimethylcyclohexanes and Related Hydrocarbons

  • Norbert Muller
  • William C. Tosch
Conference paper
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 2)


High-resolution proton magnetic resonance spectra were determined for the dimethylcyclohexanes and several related hydrocarbons between —130°C and 130°C. All of the compounds which should undergo rapid ring inversion at room temperature produce spectra which change on cooling because of “freezing out” of this motion. The assumption that appearance of the ring-hydrogen resonances as a relatively narrow band is invariably a symptom of rapid ring inversion is shown to be unfounded. Several of the ring spectra differ drastically from what is predicted using a bond-anisotropy model. A previously unrecognized effect, then, must make a significant contribution to the observed chemical shifts.


Proton Chemical Shift Raney Nickel Ring Hydrogen Ring Inversion Methine Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Pople, W. G. Schneider, and H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill Book Company, Inc., New York (1959), Chapt. 14.Google Scholar
  2. 2.
    L.M. Jackman, Applications of Nuclear Magnetic Resonance in Organic Chemistry, Pergamon Press, New York (1959), Sect. 7.2.Google Scholar
  3. 3.
    S. Brownstein and R. Müler, J. Org. Chem. 24, 1886 (1959).CrossRefGoogle Scholar
  4. 4.
    J.I. Musher, Spectrochim. Acta 16, 835 (1960).CrossRefGoogle Scholar
  5. 5.
    F.R. Jensen et al., J. Am. Chem. Soc. 82, 1256 (1960); 84, 386 (1962).CrossRefGoogle Scholar
  6. 6.
    W;B. Moniz and J. A. Dixon. J. Am. Chem. Soc. 83, 1671 (1961).Google Scholar
  7. 7.
    R.K. Harris and N. Sheppard, Proc. Chem. Soc. 418 (1961).Google Scholar
  8. 8.
    K.T. Serijan, P.H. Wise, and L.C. Gibbons, J.Am. Chem. Soc. 71, 2265 (1949).CrossRefGoogle Scholar
  9. 9.
    R. Mozingo, Org. Syntheses 3, 181 (1955).Google Scholar
  10. 10.
    W.C. Tosch, Ph.D. Thesis, Purdue University (1962).Google Scholar
  11. 11.
    F.A.L. Anet, Can. J. Chem. 39, 2262 (1961).CrossRefGoogle Scholar
  12. 12.
    A.D. Cohen, N. Sheppard, and J.J. Turner, Proc. Chem. Soc. 118 (1958).Google Scholar
  13. 13.
    N.L. Allinger. J. Am. Chem. Soc. 79, 3443 (1957).CrossRefGoogle Scholar
  14. 14.
    F. R. Jensen, personal communication.Google Scholar
  15. 15.
    S. Winstein and N.J. Holness, J. Am. Chem. Soc. 77, 5562 (1955).CrossRefGoogle Scholar
  16. 16.
    N. Muller and O.R. Hughes, unpublished results.Google Scholar
  17. 17.
    A.A. Bothner-By and C. Naar-Colin, Ann. New York Acad. Sci. 70, 833 (1958).CrossRefGoogle Scholar
  18. 18.
    J.L Musher. J. Chem. Phys. 35, 1159 (1961).CrossRefGoogle Scholar
  19. 19.
    P.T. Narasinaan, and M.T. Rogers, J. Chem. Phys. 31, 1302 (1959).CrossRefGoogle Scholar
  20. 20.
    N. L. Allinger and L. A. Freiberg, J. Am. Chem. Soc. 82, 2393 (1960).CrossRefGoogle Scholar
  21. 21.
    W.S. Johnsön et al., J. Am. Chem. Soc. 83, 606 (1961)CrossRefGoogle Scholar

Copyright information

© Society for Applied Spectroscopy Chicago, Illinois 1963

Authors and Affiliations

  • Norbert Muller
    • 1
  • William C. Tosch
    • 1
  1. 1.Department of ChemistryPurdue UniversityLafayetteUSA

Personalised recommendations