Characteristic Features of the Physicochemical Structure of Chromium Disilicide

  • B. K. Voronov
  • L. D. Dudkin
  • N. N. Trusova


An electron-valence scheme of chromium disilicide is proposed on the basis of a comparison of a crystallochemical analysis of this compound with its electrical and magnetic properties. The bond scheme in CrSi2 explains satisfactorily the anisotropy shown by the electrical and thermal conductivity of its single crystals. The anisotropy of the thermoelectric power of CrSi2 is explained by the fact that holes with a different effective mass are always present because of the heterodesmic nature of the chemical bonds (Cr-Si, Si-Si). On the basis of an analysis of the characteristic features of the change of electrical properties in the “intrinsic” conduction region, it is concluded that the free 3d level of the chromium atoms in CrSi2 acts as the acceptor and is situated, as regards energy, between the edge of the valence band and the bottom of the conduction band. From analysis of the experimental and calculated density of CrSi2, it is proposed that the high (1020 cm−3) hole density in stoichiometric samples at room temperature is due to the “molecular” imperfection of the crystal lattice.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. J. Wallbaum, Z. Metallkunde, 33: 378 (1941).Google Scholar
  2. 2.
    G. B. Bokii, Introduction to Crystal Chemistry [in Russian], Izd. MGU, Moscow (1954).Google Scholar
  3. 3.
    L. N. Guseva and B. I. Ovechkin, Dokl. Akad. Nauk SSSR, 112: 681 (1957).Google Scholar
  4. 4.
    E. N. Nikitin, Zh. Tekh. Fiz., 28: 23 (1958).Google Scholar
  5. 5.
    D. A. Robins, Phil. Mag., 3: 313 (1958).CrossRefGoogle Scholar
  6. 6.
    L. D. Dudkin, Doki. Akad. Nauk SSSR, 127: 1203 (1959).Google Scholar
  7. 7.
    L. D. Dudkin, Fiz. Tverd. Tela, 2: 397 (1960).Google Scholar
  8. 8.
    L. D. Dudkin and E. S. Kuznetsova, Porosh. Met., No. 6, p. 20 (1962).Google Scholar
  9. 9.
    T. Sakata, T. Tokushima, and Z. Kinzoku, Gijutsu Kenkyù — Hókoku, 6 (1): 1 (1963).Google Scholar
  10. 10.
    D. Shinoda, S. Asanabe, and Y. Sasaki, J. Phys. S.c. Jap., 19: 269 (1964).CrossRefGoogle Scholar
  11. 11.
    I. Z. Radovskii, T. S. Shubina, P. V. Gel’d, and F. A. Sidorenko, Porosh. Met., No. 2, p. 33 (1965).Google Scholar
  12. 12.
    I. Z. Radovskii, F. A. Sidorenko, and P. V. Gel’d, Fiz. Metal. Metalloved., 19: 915 (1965).Google Scholar
  13. 13.
    B. K. Voronov, L. D. Dudkin, N. I. Kiryukhina, and N. N. Trusova, Porosh. Met., No. 1, p. 73 (1967).Google Scholar
  14. 14.
    B. K. Voronov, L. D. Dudkin, N. I. Kiryukhina, and N. N. Trusova, lzv. Akad. Nauk SSSR, Neorg. Mater., 4: 58 (1968).Google Scholar
  15. 15.
    B. K. Voronov, L. D. Dudkin, N. I. Kiryukhina, and N. N. Trusova, lzv. Akad. Nauk SSSR, Neorg. Mater., 4: 325 (1968).Google Scholar
  16. 16.
    B. K. Voronov, L. D. Dudkin, and N. N. Trusova, Kristallografiya, 12: 519 (1967).Google Scholar
  17. 17.
    M. G. Shirmazan and M. E. Dyatkina, lzv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 9, p. 1553 (1959).Google Scholar
  18. 18.
    B. I. Davydov and I. M. Shmushkevich, Usp. Fiz. Nauk, 24: 21 (1940).CrossRefGoogle Scholar
  19. 19.
    C. A. Coulson, Valence, Oxford University Press, London (1961), p. 286.Google Scholar
  20. 20.
    L. E. Orgel, Introduction to Transition-Metal Chemistry: Ligand-Field Theory, Methuen, London (1960), p. 38.Google Scholar
  21. 21.
    G. Herzberg, Atomic Spectra and Atomic Structure, Dover, New York (1944).Google Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • B. K. Voronov
  • L. D. Dudkin
  • N. N. Trusova

There are no affiliations available

Personalised recommendations