Vegard’s Law for Some Binary and Pseudobinary Semiconductor Systems

  • Yu. P. Keloglu
  • A. S. Fedorko


A discussion is given of certain problems associated with the characteristics of the formation of bonds in sp3 hybrid covalent compounds. Alloys in the ZnSb-CdSb system are used as an example in an argument which demonstrates that the bond lengths d between the lattice atoms are independent of the composition. It is shown that Vegard’s law applies to solid solutions of binary compounds only for the average values of the bond length \(\overline{d}\). It is pointed out. that the degree of distortion of the tetrahedral coordination can explain, to a great extent, the anomalous properties resulting from the short-range order in the distribution of atoms.


Solid Solution Bond Length Anomalous Property Binary Compound Principal Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. B. Almazov, Electronic Properties of Semiconducting Solid Solutions, Consultants Bureau, New York (1968).Google Scholar
  2. 2.
    L. Vegard, Z. Phys., 5: 17 (1921).CrossRefGoogle Scholar
  3. 3.
    N. A. Goryunova, The Chemistry of Diamond-like Semiconductors, Chapman and Hall, London (1965).Google Scholar
  4. 4.
    L. Pauling and M. L. Huggins, Z. Kristallogr. KristallogeometrieKristallphys. Kristallchem., 87: 205 (1934).Google Scholar
  5. 5.
    S. S. Batsanov, Zh. Strukt. Khim., 3: 616 (1962).Google Scholar
  6. 6.
    L. S. Palatnik, Yu. F. Komnik, and V. M. Koshkin, Kristallografiya, 7: 563 (1962).Google Scholar
  7. 7.
    V. Schomaker and D. P. Stevenson, J. Amer. Chem. Soc., 63: 37 (1941).CrossRefGoogle Scholar
  8. 8.
    Z. V. Zvonkova, Kristallografiya, 4: 668 (1959).Google Scholar
  9. 9.
    Z. V. Zvonkova, in: Problems in Physical Chemistry [in Russian], Vol. 2, Moscow (1959), p. 97.Google Scholar
  10. 10.
    Yu. P. Keloglu and A. S. Fedorko, Kristallografiya, 10: 568 (1965).Google Scholar
  11. 11.
    Yu. P. Keloglu and A. S. Fedorko, Zh. Fiz. Khim., 40: 2976 (1966).Google Scholar
  12. 12.
    I. I. Kozhina and S. S. Tolkachev, Vestn. Leningrad. Univ., Fiz. Khim., No. 16 (3), p. 154 (1964).Google Scholar
  13. 13.
    Yu. P. Keloglu and A. S. Fedorko, Uch. Zap. Kishinev. Gos. Univ., 80 (Vyp. Fiz.): 121 (1965).Google Scholar
  14. 14.
    E. Mooser and W. B. Pearson, J. Electron., 1: 629 (1956).Google Scholar
  15. 15.
    K. E. Almin, Acta Chem. Scand., 2: 400 (1948).CrossRefGoogle Scholar
  16. 16.
    K. Toman, J. Phys. Chem. Solids, 16: 160 (1960).CrossRefGoogle Scholar
  17. 17.
    E. Mooser and W. B. Pearson, Rep. Meeting on Semiconductors, Rugby, 1956, pubi. By The Physical Society, London (1957), p. 65.Google Scholar
  18. 18.
    E. P. Domashevskaya and Ya. A. Ugai, Röntgenspektren und Chemischen Bindung, Leipzig (1965), p. 70.Google Scholar
  19. 19.
    M. Miksovsky, K. Smirous, and K. Toman, Proc. Fifth Intern. Conf., on Physics of Semiconductors, Prague, 1960, pubi. by Academic Press, New York (1961), p. 1087.Google Scholar
  20. 20.
    Yu. P. Keloglu and A. S. Fedorko, Zh. Strukt. Khim., 5: 236 (1964).Google Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • Yu. P. Keloglu
  • A. S. Fedorko

There are no affiliations available

Personalised recommendations