Advertisement

Transport Models for Ion-Exchange Membranes

  • Mark W. Verbrugge
  • Peter N. Pintauro
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 19)

Abstract

The use of ion-exchange membranes in electrochemical devices is advantageous because membrane systems offer a simple and durable technique for performing functions that would otherwise be impossible or require more cumbersome and energy-intensive methodologies. Ion-exchange membranes are particularly attractive from an electrochemical viewpoint because they can regulate the transport of ions and solvent in such electrochemical systems as batteries, fuel cells, electrochemical sensors, and electrochemical reactors. As new ion-exchange membrane applications emerge, and new polymer formulations are developed, the need to predict accurately the membrane transport rates of solute and solvent increases in importance.

Keywords

Transport Model Transference Number Electrochemical Potential Flux Equation Electrokinetic Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Nernst, Z Phys. Chem. 2 (1888) 613.Google Scholar
  2. 2.
    M. Planck, Ann. Phys. Chem. 39 (1890) 161.Google Scholar
  3. 3.
    J. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.Google Scholar
  4. 4.
    H. Schlichting, Boundary-Layer Theory, translated by J. Kestin, McGraw-Hill, New York, 1979.Google Scholar
  5. 5.
    H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part III: Elastic and Fluid Media, Wiley, New York, 1968 p. G11.Google Scholar
  6. 6.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960, p. 46.Google Scholar
  7. 7.
    I. C. Bassignana and H. Reiss, J. Phys. Chem. 87 (1983) 136.Google Scholar
  8. 8.
    H. A. Abramson, Electrokinetic Phenomena and Their Application to Biology and Medicine, The Chemical Catalog Company, New York, 1934, p. 17.Google Scholar
  9. 9.
    H. Helmholtz, Wied. Ann. 7 (1879) 337.Google Scholar
  10. 10.
    N. Smoluchowski, Krak Anz. 1903 182.Google Scholar
  11. 11.
    J. Th. G. Overbeek, Colloid Science, Ed. by H. R. Kruyt, Elsevier, Amsterdam, 1952, p. 195.Google Scholar
  12. 12.
    S. S. Dukhin and B. V. Derjaguin, in Surface and Colloid Science, Vol. 7, Ed. by Matijevic, editor, translated from the Russian by A. Mistetsky and M. Zimmerman, 1974, John Wiley and Sons, New York.Google Scholar
  13. 13.
    W. H. Koh, J. Colloid Interface Sci. 71 (1979) 613.Google Scholar
  14. 14.
    L. Dresner and K. A. Kraus, J. Phys. Chem. 67 (1963) 990.Google Scholar
  15. 15.
    L. Dresner, J. Phys. Chem. 67 (1963) 1635.Google Scholar
  16. 16.
    Y Kobatake and H. Fujita, J. Chem. Phys. 40 (1964) 2212.Google Scholar
  17. 17.
    C. L. Rice and R. Whitehead, J. Phys. Chem. 69 (1965) 4017.Google Scholar
  18. 18.
    F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1976, p. 147.Google Scholar
  19. G. A. H. Elton and F. G. Hirschler, Proc. Roy. Soc. (London), Ser. A 198 (1949) 581.Google Scholar
  20. 20.
    S. Levine, J. R. Marriott, G. Neale, and N. Epstein, J. Colloid Interface Sci. 52 (1975) 136.Google Scholar
  21. 21.
    W. Olivares, T. L. Croxton, and D. A. McQuarrie, J. Phys. Chem. 84 (1980) 867.Google Scholar
  22. 22.
    F. A. Morrison, Jr. and J. F. Osterle, J. Chem. Phys. 43 (1965) 2111.Google Scholar
  23. 23.
    R. J. Gross and J. F. Osterle, J. Chem. Phys. 49 (1968) 228.Google Scholar
  24. 24.
    J. C. Fair and J. F. Osterle, J. Chem. Phys. 54 (1971) 3307.Google Scholar
  25. 25.
    W. J. Moore, Physical Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1972, p. 428.Google Scholar
  26. 26.
    R. L. Fleischer and P. B. Price, Science 140 (1963) 1221.Google Scholar
  27. 27.
    J. L. Anderson and W-H. Koh, J. Colloid Interface Sci. 59 (1977) 149.Google Scholar
  28. 28.
    W-H. Koh and J. L. Anderson, AIChE J. 21 (1975) 1176.Google Scholar
  29. 29.
    G. B. Westermann-Clark and J. L. Anderson, J. Electrochem. Soc. 130 (1983) 839.Google Scholar
  30. 30.
    M. W. Kozak and E. J. Davis, J. Colloid Interface Sci. 112 (1986) 403.Google Scholar
  31. 31.
    H. C. Brinkman, Appt Sci. Res. Al (1949) 27.Google Scholar
  32. D. C. Henry, Proc. Roy. Soc. (London), Ser. A 133 (1931) 106.Google Scholar
  33. 33.
    H. A. Abramson, L. S. Moyer, and M. H. Gorin, Electrophoresis of Proteins, Reinhold, New York, 1942, p. 125.Google Scholar
  34. 34.
    J. R. Melcher and G. I. Taylor, Ann. Rev. Fluid Mech. 1 (1969) 111.Google Scholar
  35. 35.
    W F. Pickard, Progress in Dielectrics 6 (1965) 1.Google Scholar
  36. 36.
    P. Penfield and H. Haus, Electrodynamics of Moving Media, MIT Press, Cambridge, Massachusetts, 1967.Google Scholar
  37. 37.
    J. T. Davies and E. K. Rideal, Interfacial Phenomena, Academic Press, New York, 1961.Google Scholar
  38. 38.
    P. Delahay, Double Layer and Electrode Kinetics, Interscience, New York, 1965.Google Scholar
  39. 39.
    S. Nir, C. Newton, and D. Papahadjopoulos, Bioelectrochem. Bioenerg. 5 (1978) 116.Google Scholar
  40. 40.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p. 501.Google Scholar
  41. 41.
    S. Ohki and R. Kurland, Biochim. Biophys. Acta 645 (1981) 170.Google Scholar
  42. 42.
    H. Ohshima and S. Ohki, J. Colloid Interface Sci. 103 (1985) 85.Google Scholar
  43. 43.
    B. Halle, H. Wennerstrom, and L. Piculell, J. Phys. Chem. 88 (1984) 2482.Google Scholar
  44. 44.
    H. Grasdalen and B. J. Kvam, Macromolecules 19 (1986) 1913.Google Scholar
  45. 45.
    H. Ohshima and S. Ohki, Bioelectrochem. Bioenerg. 15 (1986) 173.Google Scholar
  46. 46.
    F. Booth, J. Chem. Phys. 19 (1951) 391Google Scholar
  47. 47.
    F. Booth, J. Chem. Phys. 19 (1951) 1327Google Scholar
  48. 48.
    F. Booth, J. Chem. Phys. 19 (1951) 1615Google Scholar
  49. 49.
    J. Lyklema and J. Th. G. Overbeek, J. Colloid Interface Sci. 16 (1961) 501.Google Scholar
  50. E. N. da C. Andrade and C. Dodd, Proc. Roy. Soc. (London), Ser. A 204 (1951) 449.Google Scholar
  51. 51.
    R. J. Hunter and J. V. Leyendekkers, J. Chem. Soc., Faraday Trans. 174 (1978) 450.Google Scholar
  52. 52.
    A. J. Babchin, M. A. Piliavin, and V. G. Levich, J. Colloid Interface Sci. 57 (1976) 1.Google Scholar
  53. 53.
    J. G. Kirkwood, J. Chem. Phys. 7 (1939) 911.Google Scholar
  54. 54.
    M. Born, Z. Phys. 1 (1920) 45.Google Scholar
  55. 55.
    W M. Latimer, K. S. Pitzer, and C. M. Slansky, J. Chem. Phys. 7 (1939) 108.Google Scholar
  56. 56.
    R. M. Noyes, J. Am. Chem. Soc. 84 (1962) 513Google Scholar
  57. 57.
    R. M. Noyes, J. Am. Chem. Soc. 86 (1962) 971Google Scholar
  58. 58.
    R. H. Stokes, J. Am. Chem. Soc. 86 (1964) 979Google Scholar
  59. 59.
    Y. Gur, I. Ravina, and A. J. Babchin, J. Colloid Interface Sci. 64 (1978) 326.Google Scholar
  60. 60.
    Y Gur, I. Ravina, and A. J. Babchin, J. Colloid Interface Sci. 64 (1978) 333.Google Scholar
  61. 61.
    Y. Gur and I. Ravina, J. Colloid Interface Sci. 72 (1979) 442.Google Scholar
  62. Y. Gur and I. Ravina J. Rheol. 29 (1985) 131.Google Scholar
  63. 62.
    P. N. Pintauro and M. W. Verbrugge, AIChE Meeting, Houston, Texas, March 29-April 2, 1987, Paper No. 49.Google Scholar
  64. 63.
    J. C. Henniker, Rev. Mod. Phys. 21 (1949) 322.Google Scholar
  65. 64.
    G. Jacazio, R. F. Probstein, A. A. Sonin, and D. Yung, J. Phys. Chem. 76 (1972) 4015.Google Scholar
  66. 65.
    J. L. Anderson and J. A. Quinn, J. Chem. Soc., Faraday Trans. 168 (1972) 744.Google Scholar
  67. 66.
    D. Eagland, in Water: A Comprehensive Treatise, Vol. 5, Ed. by F. Franks, Plenum Press, New York, 1975.Google Scholar
  68. 67.
    C. L. Marx, D. F. Caulfield, and S. L. Cooper, Macromolecules 6 (1973) 344.Google Scholar
  69. 68.
    T. D. Gierke, Ionic clustering in Naffion perfluorosulfonic acid membranes and its relationship to hydroxyl rejection and chloro-alkali current efficiency, paper presented at the Fall Meeting of the Electrochemical Society, October, 1977.Google Scholar
  70. 69.
    E. J. Roche, R. S. Stein, T. P. Russell, and W. J. MacKnight, J. Polym. Sci. 18 (1980) 1497.Google Scholar
  71. 70.
    E. J. Roche, M. Pineri, R. Duplessix, and A. M. Levelut, J. Polym. Sci. 19 (1981) 1.Google Scholar
  72. 71.
    M. Falk, Can. J. Chem. 58 (1980) 1495.Google Scholar
  73. 72.
    J. Ceynowa, Polymer 19 (1978) 73.Google Scholar
  74. 73.
    A. Eisenberg and H. L. Yeager, Perfluorinated Ionomer Membranes, American Chemical Society, Washington, D.C., 1982.Google Scholar
  75. 74.
    G. Schmid, Z. Electrochem. 54 (1950) 424.Google Scholar
  76. 75.
    R. Schlogl, Z. Phys. Chem. (Frankfurt) 3 (1955) 73.Google Scholar
  77. 76.
    R. Schlogl and U. Schodel, Z. Phys. Chem. (Frankfurt) 5 (1955) 372.Google Scholar
  78. 77.
    T. Teorell, Proc. Soc. Exp. Biol. 33 (1935) 282.Google Scholar
  79. 78.
    K. H. Meyer and J.-F. Sievers, Helv. Chim. Acta 19 (1936) 649.Google Scholar
  80. 79.
    K. H. Meyer and J.-F. Sievers, Helv. Chim. Acta 19 (1936) 665.Google Scholar
  81. 80.
    E. N. Lightfoot and E. M. Scattergood, AIChE J. 11 (1965) 175.Google Scholar
  82. 81.
    J. F. Osterle and M. J. Pechersky, J. Phys. Chem. 75 (1971) 3015.Google Scholar
  83. 82.
    E. Riande, in Physics of Electrolytes, Vol. 1, Ed. by J. Hladik, Academic Press, New York, 1972, p. 401.Google Scholar
  84. 83.
    F. Helfïerich, Ion Exchange, McGraw-Hill, New York, 1962.Google Scholar
  85. 84.
    F. Bergsma and Ch. A. Kruissink, Fortschr. Hochpolym.-Forsch 2 (1961) 307.Google Scholar
  86. 85.
    C. E. Haub and G. L. Foutch, Ind. Eng. Chem. Fundam. 25 (1986) 373.Google Scholar
  87. 86.
    P. K. Ng and D. D. Snyder, J. Electrochem. Soc. 128 (1981) 1714.Google Scholar
  88. 87.
    L. Onsager, Phys. Rev. 37 (1931) 405.Google Scholar
  89. 88.
    L. Onsager, Phys. Rev. 38 (1931) 2265.Google Scholar
  90. 89.
    L. Onsager, Ann. N.Y. Acad. Sci. 46 (1945) 241.Google Scholar
  91. 90.
    J. G. Kirkwood, in Ion Transport across Membranes, Ed. by H. T. Clarke, Academic Press, New York, 1954, p. 119.Google Scholar
  92. 91.
    A. Klemm, Z Naturforsch. A 8 (1953) 397.Google Scholar
  93. 92.
    A. Klemm, Z. Naturforsch. A 17 (1962) 805.Google Scholar
  94. 93.
    R. Laity, J. Chem. Phys. 30 (1959) 683.Google Scholar
  95. 94.
    R. Laity, J. Chem. Phys. 63 (1959) 80.Google Scholar
  96. 95.
    H. J. Hirschfelder, C. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954, pp. 694–720.Google Scholar
  97. 96.
    E. N. Lightfoot, Transport Phenomena and Living Systems, Wiley, New York, 1974, pp. 154–201.Google Scholar
  98. 97.
    E. A. Guggenheim, Thermodynamics, 6th ed., North-Holland, New York, 1977.Google Scholar
  99. 98.
    P. N. Pintauro and D. N. Bennion, Ind. Eng. Chem. Fundam. 23 (1984) 230.Google Scholar
  100. 99.
    W. H. Smyrl and J. Newman, J. Phys. Chem. 72 (1968) 4660.Google Scholar
  101. 100.
    F. G. Donnan, Z Elektrochem. 17 (1911) 572.Google Scholar
  102. 101.
    F. G. Donnan, Chem. Rev. 1 (1924) 73.Google Scholar
  103. 102.
    N. Lakshminarayanaiah, Transport Phenomena in Membranes, Academic Press, New York, 1969.Google Scholar
  104. 103.
    P. N. Pintauro and D. N. Bennion, Ind. Eng. Chem. Fundam. 23 (1984) 234.Google Scholar
  105. 104.
    N. Kamo, Y. Toyoshima, H. Nozaki, and Y. Kobatake, Kolloid-Z. Z. Polym. 248 (1971) 914.Google Scholar
  106. 105.
    K. G. Denbigh, Principles of Chemical Equilibrium, Cambridge University Press, Cambridge, 1957, p. 307.Google Scholar
  107. 106.
    D. N. Bennion and P. N. Pintauro, AIChE Symp. Ser. 204 (1981) 190.Google Scholar
  108. 107.
    E. N. Lightfoot, E. L. Cussler, and R. L. Rettig, AIChE J. 8 (1962) 708.Google Scholar
  109. 108.
    K. S. Spiegler, Trans. Faraday Soc. 54 (1958) 1409.Google Scholar
  110. 109.
    O. Kedem and A. Katchalsky, Biochim. Biophys. Acta 27 (1958) 229.Google Scholar
  111. 110.
    O. Kedem and A. Katchalsky, J. Gen. Physiol. 45 (1958) 143.Google Scholar
  112. 111.
    J. Jagur-Grodzinski and O. Kedem, Desalination 1 (1966) 327.Google Scholar
  113. 112.
    W Pusch, Ber. Bunsenges. Phys. Chem. 81 (1977) 269.Google Scholar
  114. 113.
    W. Pusch, Ber. Bunsenges. Phys. Chem. 81 (1977) 854.Google Scholar
  115. 114.
    M. H. Pham., P. N. Pintauro, and K. Nobe, ACS Symp. Ser., No. 281 (1985) 153.Google Scholar
  116. 115.
    K. S. Spiegler and O. Kedem, Desalination 1 (1966) 331.Google Scholar
  117. 116.
    M. F. Re and D. N. Bennion, Ind. Eng. Chem. Fundam. 12 (1975) 69.Google Scholar
  118. 117.
    J. C. Osborn and D. N. Bennion, Ind. Eng. Chem. Fundam. 10 (1971) 273.Google Scholar
  119. 118.
    D. N. Bennion and B. W. Rhee, Ind. Eng. Chem. Fundam. 8 (1969) 36.Google Scholar
  120. 119.
    D. MacKay and P. Meares, Trans. Faraday Soc. 55 (1959) 1221.Google Scholar
  121. 129.
    W Dorst, P. L. Polak, R. Caramazza, and A. J. Staverman, Gazz. Chim. Ital. 92 (1962) 1241.Google Scholar
  122. 121.
    K. Komoto, J. Electrochem. Soc. 130 (1983) 334.Google Scholar
  123. 122.
    T. Teorell, Z. Elektrochem. 55 (1951) 460.Google Scholar
  124. 123.
    W. Y. Hsu, J. R. Barkley, and P. Meakin, Macromolecules 13 (1980) 198.Google Scholar
  125. 124.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths Scientific Publications, London, 1959.Google Scholar
  126. 125.
    M. Sinha and D. N. Bennion, J. Electrochem. Soc. 125 (1978) 556.Google Scholar
  127. 126.
    H. L. Yeager, B. O’dell, and Z. Twardowski, J. Electrochem. Soc. 129 (1982) 85.Google Scholar
  128. 127.
    N. Lakshminarayanaiah, J. Phys. Chem. 73 (1969) 97.Google Scholar
  129. 128.
    R. E. Kesting, Synthetic Polymeric Membranes, McGraw-Hill, New York, 1971, p. 49.Google Scholar
  130. 129.
    K. H. Keller, E. R. Canales, and S. I. Yum, J. Phys. Chem. 75 (1971) 379.Google Scholar
  131. 130.
    H. L. Yeager and B. Kipling, J. Phys. Chem. 83 (1979) 1836.Google Scholar
  132. 131.
    M. Lopez, B. Kipling, and J. L. Yeager, Anal. Chem. 49 (1977) 629.Google Scholar
  133. 132.
    H. L. Yeager, B. Kipling, and R. L. Dotson, J. Electrochem. Soc. 127 (1980) 303Google Scholar
  134. 133.
    P. Meares, J. P. Thain, and D. G. Dawson in Membranes-A Series of Advances, Ed. by G. Eisenman, Marcel Dekker, New York, 1972, pp. 55–124.Google Scholar
  135. 134.
    G. S. G. Beveridge and R. S. Schechter, Optimization Theory and Practice, McGraw-Hill, New York, 1970.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Mark W. Verbrugge
    • 1
  • Peter N. Pintauro
    • 2
  1. 1.Physical Chemistry DepartmentGeneral Motors Research LaboratoriesWarrenUSA
  2. 2.Department of Chemical EngineeringTulane UniversityNew OrleansUSA

Personalised recommendations