Advertisement

Effects of Substituents in Quinonoid Compounds

  • Petr Zuman

Abstract

It was shown in Chapter II that a measure of the influence of the substituent on the redox potential of a reversible electrode system is provided by the change in the increment of the standard free energy in the interconversion of the oxidized and reduced forms. The shift in the redox potential (or half-wave potential, denoted by Δ1/2), defined as Δ 1/2 = (1/2)x — ( 1/2)H (where the index X denotes the compound containing the substituent X and the index H the parent reference compound) is proportional to the difference of the logarithms of the equilibrium constants KX and KH of the corresponding reversible process
$$\Delta E{{{}^\circ }_{1/2}}\sim \ln \frac{{{K}_{X}}}{{{K}_{H}}}$$
(58)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. Clark, “Oxidation—Reduction Potentials of Organic Systems,” Williams and Wilkins, Baltimore, 1960.Google Scholar
  2. 2.
    M. Kalousek and M. Rdlek, Collection Czech. Chem. Commun. 19: 1099 (1954); Chem. Listy 48: 808 (1954).Google Scholar
  3. 3.
    R. W. Taft, Jr., Separation of Polar, Steric, and Resonance Effects in Reactivity in “Steric Effects in Organic Chemistry” (M. S. Newman ed.) John Wiley and Sons, New York, 1956.Google Scholar
  4. 4.
    L. P. Hammett, “Physical Organic Chemistry,” p. 184, McGraw-Hill, New York, 1940.Google Scholar
  5. 5.
    H. H. Jaffé, Chem. Rev. 53: 191 (1953).CrossRefGoogle Scholar
  6. 6.
    M. G. Evans and J. De Heer, Quart. Rev. 4: 94 (1950).CrossRefGoogle Scholar
  7. 7.
    P. Zuman, Collection Czech. Chem. Commun. 27: 2035 (1962).CrossRefGoogle Scholar
  8. 8.
    M. Charton, A paper presented before the Meeting of the American Chemical Society (1961).Google Scholar
  9. 9.
    T. Hayashi and R. Shibata, Kogyo Kagaku Zasshi 63 : 840 (1960) ;Google Scholar
  10. T. Hayashi and R. Shibata, quoted according to T. Hayashi and R. Shibata, Bull. Chem. Soc. Japan 34: 1116 (1961).CrossRefGoogle Scholar
  11. 11.
    O. Ryba, J. Petrdnek, and J. Pospísil, Collection Czech. Chem. Commun. 30: 843 (1965).CrossRefGoogle Scholar
  12. 12.
    O. Ryba, J. Petrânek, and J. Pospísil, Collection Czech. Chem. Commun. 30: 2157 (1965).CrossRefGoogle Scholar
  13. 13.
    D. E. Kvalnes, J. Am. Chem. Soc. 56: 667, 2478 (1934).Google Scholar
  14. 14.
    E. Bilman, A. L. Jensen, and K. O. Pederson, J. Chem. Soc. 127: 199 (1925).CrossRefGoogle Scholar
  15. 15.
    J. B. Conant and L. F. Fieser, J. Am. Chem. Soc. 45: 2194 (1923).CrossRefGoogle Scholar
  16. 16.
    J. B. Conant and L. F. Fieser, J. Am. Chem. Soc. 46: 1858 (1924).CrossRefGoogle Scholar
  17. 17.
    V. K. LaMer and L. E. Baker, J. Am. Chem. Soc. 44: 1954 (1922).CrossRefGoogle Scholar
  18. 18.
    J. B. Conant and L. F. Fieser, J. Am. Chem. Soc. 44: 2480 (1922).CrossRefGoogle Scholar
  19. 19.
    R. T. Arnold and H. E. Zaugg, J. Am. Chem. Soc. 63: 1317 (1941).CrossRefGoogle Scholar
  20. 20.
    E. Scrocco and G. Marmani, Ann. Chim. (Rome) 41: 716 (1951).Google Scholar
  21. 21.
    L. I. Smith, I. M. Kolthoff, S. Wawzonek, and P. M. Ruoff, J. Am. Chem. Soc. 63; 1018 (1941).CrossRefGoogle Scholar
  22. 22.
    M. E. Peover, J. Chem. Soc. 1962: 4540.Google Scholar
  23. 23.
    O. Dimroth, Angew. Chem. 46: 571 (1933).CrossRefGoogle Scholar
  24. 24.
    H. Berg, Z. Chem. 2: 237 (1962).CrossRefGoogle Scholar
  25. 25.
    R. L. Bent, J. C. Dessloch, F. C. Duennebier, D. W. Fassett, D. B. Glass, T. H. James, D. B. Julian, W. R. Ruby, J. M. Snell, J. H. Sterrer, J. R. Thirtle, P. W. Vittum, and A. Weissberger, J. Am. Chem. Soc. 73: 3100 (1951).CrossRefGoogle Scholar
  26. 26.
    L. F. Fieser and M. Fieser, “Lehrbuch der organischen Chemie,” Verlag Chemie, Weinheim, 1954.Google Scholar
  27. 27.
    P. Zuman, Chem. Listy 48, 94 (1954).Google Scholar
  28. 28.
    F. T. Eggertsen and F. T. Weiss, Anal. Chem. 28: 1008 (1956).CrossRefGoogle Scholar
  29. 29.
    L. F. Fieser and M. Fieser, J. Am. Chem. Soc. 57; 491 (1935).CrossRefGoogle Scholar
  30. 30.
    K. Wallenfels and W. Möhle, Ber. 76: 924 (1943).Google Scholar
  31. 31.
    E. G. Ball, J. Biol. Chem. 114: 649 (1936).Google Scholar
  32. 32.
    L. F. Fieser, J. Am. Chem. Soc. 50, 439 (1928).CrossRefGoogle Scholar
  33. 33.
    N. Ikeda, J. Pharm. Soc. Japan 75: 1073 (1955).Google Scholar
  34. 34.
    I. F. Vladimircev and A. G. Stromberg, Zh. Obshch. Khim. 27: 1029 (1957).Google Scholar
  35. 35.
    P. Zuman, unpublished results.Google Scholar
  36. 36.
    L. F. Lugg, A. K. Macbeth, and F. L. Winsor, J. Chem. Soc. 1936: 145, 1457.CrossRefGoogle Scholar
  37. 37.
    P. Zuman, Collection Czech. Chem. Commun. 19: 1140 (1954); Chem. Listy 48: 524 (1954).Google Scholar
  38. 38.
    V. E. Dicent, Zh. Obshch. Khim. 29: 1370 (1959).Google Scholar
  39. 39.
    L. Stârka, L. Vystrcil, and B. Stârkovâ, Chem. Listy 51: 1440 (1957).Google Scholar
  40. 40.
    39 L. A. Wiles, J. Chem. Soc. 1952: 1958.Google Scholar
  41. 41.
    R. J. Crawford, S. Levine, R. M. Elofson, and R. B. Sandin, J. Am. Chem. Soc. 79: 3153 (1957).CrossRefGoogle Scholar
  42. 42.
    R. Jones and T. McL. Spotswood, Australian J. Chem. 15: 492 (1962).CrossRefGoogle Scholar
  43. 43.
    M. E. Peover, Nature 193, 475 (1962).CrossRefGoogle Scholar
  44. 44.
    M. E. Peover, Nature 191, 702 (1961).CrossRefGoogle Scholar
  45. 45.
    M. E. Peover, Trans. Faraday Soc. 58: 1656 (1962).Google Scholar
  46. 46.
    M. E. Peover and J. D. Davies, Trans. Faraday Soc. 60: 476 (1964).CrossRefGoogle Scholar
  47. 47.
    E. Braude, L. Jackmann, and R. Linstead, J. Chem. Soc. 1954: 3548.Google Scholar
  48. 48.
    H. Musso, K. Figge, and D. J. Becker, Chem. Ber. 94: 1107 (1961).CrossRefGoogle Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • Petr Zuman
    • 1
  1. 1.Heyrovský Institute of PolarographyCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations