Advertisement

Abstract

The discovery of the reducibility or oxidizability of certain organic compounds at a dropping mercury electrode was followed very soon by a search for relations between the polarographic behavior of organic substances and their structure. Heyrovský1,2 was the first to correlate these properties for a representative number of compounds on the basis of the available experimental evidence. He stressed especially the significant role that conjugated double and triple bonds and aromatic rings play in determining the reducibility of a given compound. From the available material Heyrovský deduced that polarographic reduction becomes easier as the number of conjugated bonds in the organic molecule increases. The polarographic reduction wave is observed, therefore, at more positive potentials, the more extended the conjugated system in the molecule. This principle remains one of the important guiding rules for organic polarographers, even though various other factors have been recognized recently as affecting polarographic oxidizability or reducibility. It plays an especially important role in predicting whether a compound (which has not yet been studied polarographically and whose polarographic behavior has not been described in the literature) will undergo polarographic reduction in the available potential range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Heyrovskÿ, “A Polarographic Study of the Electrokinetic Phenomena of Adsorption, Electroreduction and Overpotential Displayed at the Dropping Mercury Cathode,” Actualites Scientifiques at Industrielles, No. 90, Paris, 1934.Google Scholar
  2. 2.
    J. Heyrovskÿ, “Polarographie,” 185, Springer Verlag, Wien, 1941.CrossRefGoogle Scholar
  3. 3.
    M. Shikata and I. Tachi, Collection Czech. Chem. Commun. 10: 368 (1938).CrossRefGoogle Scholar
  4. 4.
    R. Brdicka, Casopis Lékm’ú teskÿch 61: 53 (1948).Google Scholar
  5. 5.
    V. Hanus, Proceedings of the First International Polarography Congress, Prague, 1951, Part III, p. 103, Piirodovéd. nakl., Prague, 1962.Google Scholar
  6. 6.
    J. E. Page, Quart. Rev. 6: 262 (1953).CrossRefGoogle Scholar
  7. 7.
    S. Wawzonek, Anal. Chem. 21: 60, (1949); 22: 30 (1950); 24: 32 (1952); 26: 65 (1954);28: 635 (1956); 30:66 (1958); 32: 114 (1960); 34: 182 R (1962); 36: 220 R (1964).Google Scholar
  8. 8.
    S. Wawzonek, “Organic Polarography,” in Polarography, Second Ed., edited by I. M. Kolthoff and J. J. Lingane, Interscience Publishers Inc., New York, 1952.Google Scholar
  9. 9.
    M. V. Stackelberg, “Polarographie organischer Stoffe,” in Methoden der organischen Chemie, Part III, Vol. 2, Hauben-Weyl, Stuttgart, 1955.Google Scholar
  10. 10.
    F. Ender, Z. Elektrochem. 54: 219 (1950).Google Scholar
  11. 11.
    H. J. Gardner and L. E. Lyons, Rev. Pure Appl. Chem. 3: 134 (1953).Google Scholar
  12. 12.
    P. J. Elving, “Application of Polarography to Organic Analysis,” in Organic Analysis, Vol. II, p. 195, edited by J. Mitchell Jr., Interscience Publishers Inc., New York, 1954.Google Scholar
  13. 13.
    C. Prévost and P. Souchay, Chim. Anal. 37: 3 (1955).Google Scholar
  14. 14.
    I. A. Korshunov, Zavod. Lab. 24: 543 (1958).Google Scholar
  15. 15.
    J. Tirouflet and E. Laviron, Ricerca Sci. 29: Suppl. 189 (1959) ( Contributi teor. sper. polarografia, Vol. IV).Google Scholar
  16. 16.
    J. Tirouflet and R. Dabard, Ricerca Sci. 29: Suppl. 211 (1959) ( Contributi teor. sper. polarografia, Vol. IV).Google Scholar
  17. 17.
    P. J. Elving, Ricerca Sci. 30: Suppl. 205 (1960) ( Contributi teor. sper. polarografia, Vol. V).Google Scholar
  18. 18.
    H. W. Nürnberger, Angew. Chem. 72: 433 (1960).CrossRefGoogle Scholar
  19. 19.
    P. J. Elving, “Polarography in Organic Analysis,” in Progress in Polarography, Vol. II, p. 625, edited by P. Zuman and I. M. Kolthoff, Interscience Publishers Inc., New York, 1961.Google Scholar
  20. 20.
    Ju. P. Kitajev and G. K. Budnikov, Uspechi Khhn. 31: 670 (1962).Google Scholar
  21. 21.
    P. Zuman, Chem. Listy 48: 94 (1954).Google Scholar
  22. 22.
    L. P. Hammett, Chem. Rev. 17: 125 (1935).CrossRefGoogle Scholar
  23. 23.
    L. P. Hammett, “Physical Organic Chemistry,” p. 184; McGraw-Hill Book Co., New York, 1940.Google Scholar
  24. 24.
    H. H. Jaffé, Chem. Rev. 53: 192 (1953).Google Scholar
  25. 25.
    R. W. Taft Jr., “Separation of Polar, Steric, and Resonance Effects in Reactivity,” in Steric Effects in Organic Chemistry, edited by M. S. Newman, John Wiley & Sons Inc., New York, 1956.Google Scholar
  26. 26.
    H. Mejman, Zh. Fiz. Chem. 22: 1454 (1948).Google Scholar
  27. 27.
    J. Kouteckÿ, Chem. Listy 47: 323 (1953)Google Scholar
  28. J. Kouteckÿ Collection Czech. Chem. Commun. 18: 597 (1953).CrossRefGoogle Scholar
  29. 28.
    P. Delahay, New Instrumental Methods in Electrochemistry, Interscience Publishers, New York, 1954, str. 82; J. Am. Chem. Soc. 75: 1430 (1953); 76: 6417 (1954).CrossRefGoogle Scholar
  30. 29.
    R. Brdicka, Collection Czech. Chem. Commun. 19: 541 (1954).CrossRefGoogle Scholar
  31. 30.
    A. I. Lopushanskaya and A. V. Pamfilov, Usp. Khim. 30: 386 (1961).CrossRefGoogle Scholar
  32. 31.
    P. Zuman, D.Sc. Thesis, Czechoslovak Academy of Science, Prague, 1959.Google Scholar
  33. 32.
    P. Zuman, Collection Czech. Chem. Commun. 25: 3225 (1960).CrossRefGoogle Scholar
  34. 33.
    P. Zuman, Chem. Listy 54: 1244 (1960)Google Scholar
  35. P. Zuman J. Polarograph. Soc. 7: 66 (1961).Google Scholar
  36. 34.
    P. Zuman, Ricerca Sci. 30: Suppl. 229 (1960) ( Contributi teor. sper. polarografia, Vol. V).Google Scholar
  37. 35.
    J. Volke, Chem. Listy 52: 16 (1958).Google Scholar
  38. 36.
    F. Soren, Chem. Obzor 18: 213 (1943).Google Scholar
  39. 37J.
    Volke, Chem. Listy 51: 414 (1957).Google Scholar
  40. 38.
    G. Giacometti and A. Del Marco, Atti. Accad. Lincei [8] 14: 511 (1953).Google Scholar
  41. 39.
    E. Knobloch and E. Svhtek, Chem. Listy 49: 37 (1955)Google Scholar
  42. E. Knobloch and E. Svhtek, Collection Czech. Chem. Commun. 20: 1113 (1955).CrossRefGoogle Scholar
  43. 40.
    P. Zuman, “Some Techniques in Organic Polarography,” in Advances in Analytical Chemistry and Instrumentation, Vol. 2, p. 219, edited by C. N. Reilley, Interscience Publishers Inc., New York, 1963.Google Scholar
  44. 41.
    A. A. Vlcek, Chem. Listy 48: 189 (1954);Google Scholar
  45. A. A. Vlcek Collection Czech. Chem. Commun. 19: 862 (1954).CrossRefGoogle Scholar
  46. 42.
    L. Sthrka, A. Vystrcil, and B. Stârkovh, Chem. Listy 51: 1440 (1957)Google Scholar
  47. L. Sthrka, A. Vystrcil, and B. Stârkovh, Collection Czech. Chem. Commun. 23: 206 (1958).CrossRefGoogle Scholar
  48. 43.
    P. H. Given and M. E. Peover, Advances in Polarography (Proceedings of the Second International Congress Polarography, Cambridge, 1959 ), Vol. III, p. 948, Pergamon Press, Oxford, 1960.Google Scholar
  49. 44.
    L. Holleck and P. Becher, J. Electroanalyt. Chem. 4: 321 (1962).Google Scholar
  50. 45.
    T. Sasaki, Pharm. Bull. 2: 104 (1954).CrossRefGoogle Scholar
  51. 46.
    P. Lanza, A. Delmarco, A. F. McKay, and G. Semerano, Ricerca Sci. 26: 116, 129, 148 (1956)Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • Petr Zuman
    • 1
  1. 1.Heyrovský Institute of PolarographyCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations