Physiological and Structural Ontogeny of the Source Leaf

  • Robert Turgeon
  • John A. Webb
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 4)


A leaf is transformed during ontogenesis from a heterotrophic, to an autotrophic, organ. Initial dependence on phloem imported nutrients is lost as increasing photosynthetic capacity enables the lamina to satisfy its own carbon requirements, and to export excess photosynthate. This transition is interesting from both a practical and a theoretical viewpoint. The leaf becomes an asset to the carbon economy of the plant only when it is autotrophic and has begun to export. Theoretically, the study of conditions which contribute to the start of assimilate flow should provide insight into the mechanisms of vein loading and long-distance transport.


Mature Leaf Intermediary Cell Sieve Tube Sieve Element Minor Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARNOLD, W.N. 1969. J. Theoret. Biol. 21: 13–20CrossRefGoogle Scholar
  2. AVERY, G.S., Jr. 1933. Amer. J. Bot. 20: 565–592CrossRefGoogle Scholar
  3. BIELESKI, R.L. 1966. Plant Physiol. 41: 447–454PubMedCrossRefGoogle Scholar
  4. BYERLY, T.C. 1930. Jour. Morph. and Physiol. 50: 341–359CrossRefGoogle Scholar
  5. ERICKSON, R.O., and F.J. MICHELINE, 1957. Amer. J. Bot. 44: 297–305CrossRefGoogle Scholar
  6. ESAU, K. 1965. Plant Anatomy 2nd Ed., John Wiley and Sons, New York.Google Scholar
  7. FISCHER, A. 1885. Ber. Verh. Kon. Sachs. Ges. Wiss. Liepzig, Math-Phys. C1.37: 245–290Google Scholar
  8. GUNNING, B.E.S., J.S. PATE and L.G. BRIARTY, 1968. J. Cell Biol. 37: C7-C12PubMedCrossRefGoogle Scholar
  9. ISEBRANDS, J.G. and P.R. LARSON, 1973. Amer. J. Bot. 60: 199–208CrossRefGoogle Scholar
  10. JONES, H. and J.E. EAGLES, 1962. Annals Bot. 26: 505–510Google Scholar
  11. JONES, H., R.V. MARTIN and H.K. PORTER. 1959. Annals Bot. 23: 493–508Google Scholar
  12. LARSON, P.R., J.G. ISEBRANDS and R.E. DICKSON. 1972. Planta 107: 301–314CrossRefGoogle Scholar
  13. PETERSON, C.A. and H.B. CURRIER. 1969. Physiol. Planta. 22: 1238–1250CrossRefGoogle Scholar
  14. STOUT, P.R. 1961. Calif. Fert. Conf. Proc. 9: 21–23Google Scholar
  15. STREETER, G.L. 1920. Contrib. Embryol. 11: 143–170Google Scholar
  16. THROWER, S.K. 1962. Aust. J. Biol. Sci. 15: 629–649Google Scholar
  17. TURGEON, R. and J.A. WEBB. 1973. Planta 113: 179–191CrossRefGoogle Scholar
  18. TURGEON, R., J.A. WEBB and R.F. EVERT. Protoplasma: in press.Google Scholar
  19. WEBB, J.A. 1970. Can. J. Bot. 48: 935–942CrossRefGoogle Scholar
  20. WEBB, J.A. 1971. Can. J. Bot. 49: 717–733CrossRefGoogle Scholar
  21. WEBB, J.A. and P.R. GORHAM. 1964. Plant Physiol. 39: 663–672PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert Turgeon
    • 1
  • John A. Webb
    • 2
  1. 1.Department of BotanyRockefeller UniversityNew YorkUSA
  2. 2.Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations