Magnetic Phase Diagrams of Some Uranium Monopnictides and Mono-Chalcogenides

  • J. Rossat-Mignod
  • P. Burlet
  • S. Quézel
  • O. Vogt
  • H. Bartholin


The uranium monopnictides, with the NaC1 crystal structure, exhibit highly unusual magnetic behaviors which have many similarities with those of cerium monopnictidesl. The characteristic magnetic properties originate from their extended nature of the cation f-electron wave functions and their proximity to the Fermi leve12,3 which gives rise to a p-f hybridization with the electrons of the anion p-band. Among this series UAs is certainly the compound which presents the most complex behaviorl,4,5. At about 1/2 TN UAs undergoes a first order transition from a +−+− (Type I) to a ++−− (Type IA) stacking of ferromagnetic (001) planes6,7. This is accompanied by an increase of the magnetic moment of the uranium ion7. Moreover, no significant tetragonal distortion was detected at TN or at the Type I-Type IA transition8. Measurements in high magnetic fields have evidenced a multiphase behavior9,10, in particular a “ferri-magnetic” phase appears to exist close to TN 4. In trying to clarify the situation and shed some light on the puzzling magnetic properties of this compound, an extensive invetigation of the magnetic phase diagram (H,T) of UAs has been undertaken, including neutron diffraction and magnetization experiments. The main results for a magnetic field applied along the <001> and <110> directions are reported in this paper.


Wave Vector Easy Axis Magnetic Phase Diagram Neutron Experiment Thorium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Rossat-Mignod, P. Burlet, S. Quézel and 0. Vogt, Physica 102 B: 237 (1980)Google Scholar
  2. 2.
    J. Schoenes, Physica 102 B: 45 (1980)Google Scholar
  3. 3.
    Y. Baer, Physica 102 B: 104 (1980)Google Scholar
  4. 4.
    J. Rossat-Mignod, P. Burlet, H. Bartholin, R. Tchapoutian, O. Vogt, C. Vettier and R. Lagnier, Physica 102 B: 177 (1980)Google Scholar
  5. 5.
    S.K. Sinha, G.H. Lander, S.M. Shapiro and 0. Vogt, Physica 102 B:174 (1980) and Phys. Rev. 23: 4556 (1981)CrossRefGoogle Scholar
  6. 6.
    J. Leciejewicz, A. Murasik and R. Troé, Phys. Status Solidi 30: 157 (1968)CrossRefGoogle Scholar
  7. 7.
    G.H. Lander, M. H. Mueller and J. F. Reddy, Phys. Rev. B6: 1880 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Knott, G.H. Lander, M.H. Mueller and 0. Vogt, Phys. Rev. B 21: 4159 (1980)CrossRefGoogle Scholar
  9. 9.
    G. Busch, 0. Vogt and H. Bartholin, J. de Phys. C4 - 40: 64 (1979)Google Scholar
  10. 10.
    Vogt, Physica 102 B+C: 206 (1980)Google Scholar
  11. 11.
    J. Rossat-Mignod, P. Burlet,0. Vogt and G.H. Lander, J. Phys. C12:1101 (1979) and J. de Phys. C4 - 40: 70 (1979)Google Scholar
  12. 12.
    P. Burlet, S. Quézel, J. Rossat-Mignod, G. H. Lander and 0. Vogt J. Magn. Magn. Mater. 14: 309 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    P. Burlet, S. Quézel, J. Rossat-Mignod, 0. Vogt and G.H. Lander Physica 102 B: 271 (1980)Google Scholar
  14. 14.
    G. Claudet,B. Gravil, J. Rossat-Mignod and S. Burgess, submitted to CryogenicsGoogle Scholar
  15. 15.
    J. Rossat-Mignod, P. Burlet, J. Villain, H. Bartholin, Wang Tcheng-Si, D. Florence and 0. Vogt, Physica86-88 B:129 (1977); Phys. Rev. B 16: 440 (1977)CrossRefGoogle Scholar
  16. 16.
    The moment value 2.25 11B obtained from powder experiments7 has been used because our single crystal data gives a larger value (u2.4 to 2.5 pB) indicating the presence of extinction effects.Google Scholar
  17. 17.
    H. Bartholin, P. Burlet, S. Quézel, J. Rossat-Mignod and 0.Vogt, J. de Phys. C5 - 40: 130 (1979)Google Scholar
  18. 18.
    H. Bartholin, D. Florence, Wang Tchen-Si and 0. Vogt, Phys. Status Solidi (a) 24: 631 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    G.H. Lander, M. H. M.eller,D. M. Sparlin and O. Vogt, Phys. Rev. B 14: 5035 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    A. Delapalme, G. Busch, 0. Vogt and G.H. Lander, J. de Phys. C4 - 40: 74 (1979)Google Scholar
  21. 21.
    J. Schoenes, private communicationGoogle Scholar
  22. 22.
    B.R. Cooper, 0. Vogt and R. Siemann, J. Magn. Magn. Mat. 15 - 18: 1249 (1980)Google Scholar
  23. 23.
    B. R. Cooper, 0. Vogt and R. Siemann, Physica 102 B: 41 (1980)Google Scholar
  24. 24.
    K. Takegahara, H. Takahashi, A. Yanase and T. Kasuya, J. Phys. C 14: 737 (1981)ADSCrossRefGoogle Scholar
  25. 25.
    H. Bartholin, J.M. Effantin, P. Burlet, J. Rossat-Mignod and O. Vogt, submitted to this conferenceGoogle Scholar
  26. 26.
    J. Jensen, P. Bak, preprintGoogle Scholar
  27. 27.
    G. H. Lander and W.G. Stirling, Phys. Rev. B 21: 436 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    R. Siemann and B.R. Cooper, Phys. Rev. Lett. 44: 1015 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. Rossat-Mignod
    • 1
  • P. Burlet
    • 1
  • S. Quézel
    • 1
  • O. Vogt
    • 2
  • H. Bartholin
    • 3
  1. 1.Centre d’Etudes NucléairesDRF/DNGrenoble CedexFrance
  2. 2.E.T.H.ZürichSwitzerland
  3. 3.France and SNCIUniversité de Toulon, 83130 La GardeGrenoble CedexFrance

Personalised recommendations