Magnetism and Crystal Fields in Ternary Superconductors

  • G. K. Shenoy
  • G. W. Crabtree
  • D. Niarchos
  • F. Behroozi
  • B. D. Dunlap
  • D. Hinks
  • D. R. Noakes


Ternary compounds exhibiting superconductivity have been under intensive investigation in the last few years, and some of the related properties were reviewed in the last proceedings of this conference series by several authors.1–3 Among the more stimulating phenomena is the observation that many of these materials exhibit superconductivity even when one of the constituents is strongly magnetic, such as a rare earth (RE) ion. This is in sharp contrast to the behavior usually found in binary compounds, where very small concentrations of magnetic ions are adequate to totally suppress the superconducting transition. In the ternary materials, the presence of large concentrations of magnetic ions has also provoked renewed interest in questions concerning the ways in which superconductivity and magnetism affect one another, and whether the two types of order can simultaneously occur. Much of the work carried out in the past on the coexistence question utilized pseudobinary systems, and it is now generally believed that those experiments showed the coexistence of superconductivity with spin-glass type ordering, rather than with true, long-range magnetism.4 The ternary compounds, being structurally homogeneous, will not show that behavior, and so are much more ideally suited to stimulate and test theoretical predictions on the interaction between magnetism and superconductivity.


Rare Earth Neutron Diffraction Specific Heat Data Chevrel Phase Paramagnetic Relaxation Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Maple, H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, W. Odoni and H. R. Ott in Crystalline-Electric Field and Structural Effects in f-Electron Systems, Eds. J. E. Crow, R. P. Guertin and T. W. Mihalisin, Plenum Press, New York (1980), p. 533CrossRefGoogle Scholar
  2. 2.
    J. W. Lynn in Ref. 1, p. 547Google Scholar
  3. 3.
    S. Maekawa and C. Y. Huang in Ref. 1, p. 561Google Scholar
  4. 4.
    S.Roth, Appl. Phys. 15, 1 (1978)Google Scholar
  5. 5.
    G. K. Shenoy, B. D. Dunlap and F. Y. Fradin, Eds. Ternary Superconductors, North-Holland, New York, 1981Google Scholar
  6. 6.
    J. M. Vandenberg and B. T. Matthias, Proc. Natl. Acad. Sci. 74, 1336 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    L. D. Woolf, Ph.D. Thesis, University of California-LaJolla (1980) UnpublishedGoogle Scholar
  8. 8.
    S. Ofer, I. Nowik and S. G. Cohen in Chemical Applications of MBssbauer Spectroscopy, Eds. V. I. Goldanskii and R. H. Herber, Acadamic Press, New York, 1968, p. 428Google Scholar
  9. 9.
    See for example, G. K. Wertheim, MBssbauer Effect, Academic Press, N.Y., 1964Google Scholar
  10. 10.
    R. P. Gupta and S. K. Sen, Phys. Rev. A7, 850 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    J. Blok and D. A. Shirley, Phys. Rev. 143 278 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962)ADSCrossRefGoogle Scholar
  13. 13.
    G. K. Shenoy, D. R. Noakes, D. Hinks, D. Niarchos and B. D. Dunlap, to be publishedGoogle Scholar
  14. 14.
    L. D. Woolf, D. C. Johnston, H. B. MacKay, R. W. McCullum and M. B. Maple, J. Low Temp. Phys. 35, 651 (1979)ADSCrossRefGoogle Scholar
  15. L5. H. B. MacKay, L. D. Woolf, M. B. Maple and D. C. Johnston, J. Low Temp. Phys. 41, 639 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kumagai, Y. Inoue and K. Asayama, J. Phys. Soc. Japan 47, 1363 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    F. Acker and H. C. Ku, J. Low Temp. Phys. 42, 449 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    D. E. Moncton, D. B. WcWhan, J. Eckert, G. Shirane and W. Thomlinson, Phys. Rev. Lett. 39, 1164 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    S. K. Sinha, G. W. Crabtree, D. G. Hinks and H. Mook, to be publishedGoogle Scholar
  20. 20.
    G. K. Shenoy, B. D. Dunlap, F. Y. Fradin, S. K. Sinha, C. W. Kimball, W. Potzel, F. PrBbst and C. M. Kalvius, Phys. Rev. B9, 3886 (1980)Google Scholar
  21. 21.
    G. W. Crabtree, F. Behroozi and S. A. Campbell, (to be published)Google Scholar
  22. 22.
    G. K. Shenoy, P. J. Viccaro, D. Niarchos, J. D. Cashion, B. D. Dunlap and F. Y. Fradin in Ref. 5, p. 163Google Scholar
  23. 23.
    G. H. Lander, S. K. Sinha and F. Y. Fradin, J. Appl. Phys. 50, 1990 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    H. C. Hamaker, H. B. MacKay, L. D. Woolf, M. B. Maple, W. Odoni and H. R. Ott, Phys. Lett. 81A, 91 (1981)CrossRefGoogle Scholar
  25. 25.
    P. Bonville, J. A. Hodges, P. Imbert, G. Jehanno, R. Chevrel and M. Sergent, Revue Phys. Appl. 15, 1139 (1980)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • G. K. Shenoy
    • 1
  • G. W. Crabtree
    • 1
  • D. Niarchos
    • 1
  • F. Behroozi
    • 1
    • 2
  • B. D. Dunlap
    • 1
  • D. Hinks
    • 1
  • D. R. Noakes
    • 1
  1. 1.Argonne National Laboratory Solid State Science Division 9700 SoCass Avenue ArgonneUSA
  2. 2.University of WisconsinParkside KenoshaUSA

Personalised recommendations