Advertisement

Mechanism of Unusual Magnetic Anisotropy in the Cerium Monopnictides

  • K. Takegahara
  • H. Takahashi
  • A. Yanase
  • T. Kasuya

Abstract

The inelastic neutron scattering done on various rare earth monopnictides with the NaCl crystal structure indicates that except for Ce monopnictides the point charge model of crystal field theory is quite applicable.lIn the Ce monopnictides except CeN, each Ce is in the trivalent configuration, that is S=1/2, L=3 and J=5/2.2 Because of a large spin-orbit interaction, the excited J=7/2 states lie at 0.28eV above the J=5/2 states and may be ignored in the following discussion. In the cubic crystal field, the J=5/2 multiplet splits into a Г7 doublet and a Г8 quartet. The point charge model predicts the Г7 state to be lower. Among these compounds, CeP and CeAs behave as normal trivalent magnetic materials with the Г7 ground state in the paramagnetic region and its antiferromagnetic order is of the type I3. However the crystal field splitting is about a half of that expected from the extrapolation from other rare earth monopnictidesl.

Keywords

Conduction Band Valence Band Crystal Field Crystal Field Splitting Quartet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Birgeneau, E. Bucher, J. P. Maita, L. Passell, and K. C. Turberfield, Phys. Rev., B8, 5345 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    H. Heer, A. Furrer, W. Hälg, and O. Vogt, J. Phys. C:Solid State Phys., 12, 5207 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    F. Hulliger and H. R. Ott, Z. Physik, B29, 47 (1978).ADSGoogle Scholar
  4. 4.
    G. Busch and O. Vogt, Phys. Letters, 25A, 449 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    P. Burlet, J. Rossat-Mignod, H. Bartholin, and O. Vogt, J. de Phys., 40, 47 (1979).CrossRefGoogle Scholar
  6. 6.
    J. Rossat-Mignod, P. Burlet, J. Villain, H. Bartholin, W. Tcheng-Si, D. Florence, and O. Vogt, Phys. Rev., B16, 440 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    H. Bartholin, P. Burlet, S. Quezel, J. Rossat-Mignod and O. Vogt, J. de Phys., 40, C5–130 (1979).Google Scholar
  8. 8.
    J. Rossat-Mignod, P. Burlet, H. Bartholin, O. Vogt, and R. Lagnier, J. Phys. C:Solid State Phys., 13, 6381 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    T. Suzuki, M. Sera, H. Shida, K. Takegahara, H. Takahashi, A. Yanase, and T. Kasuya, in:“Valence Fluctuations in Solids,” L. M. Falicov, W. Hanke, and M. B. Maple, eds., North-Holland, Amsterdam, (1981).Google Scholar
  10. 10.
    Y.-L. Wang and B. R. Cooper, Phys. Rev., B2, 2607 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    J. X. Boucherie, A. Delapalme, C. J. Howard, J. Rossat-Mignod, and 0. Vogt, Physica, 102B, 253 (1980).Google Scholar
  12. 12.
    K. Takegahara, A. Yanase, and T. Kasuya, J. de Phys., 41,C5–327 (1980), Erratum J. de Phys., 41, 1231 (1980).Google Scholar
  13. K. Takegahara, H. Takahashi, A. Yanase, and T. Kasuya, J. Phys. C:Solid State Phys., 14, 737 (1981).ADSCrossRefGoogle Scholar
  14. T. Kasuya, K. Takegahara, M. Kasaya, Y. Isikawa, H. Takahashi, T. Sakakibara, and M. Date, in:“Physics in High Magnetic Fields,” S. Chikazumi and N. Miura, eds., Springer-Verlag, Berlin, (1981).Google Scholar
  15. T. Kasuya, in:“Electron Correlation and Magnetism in Narrow-Band Systems,” T. Moriya, ed., Springer-Verlag, Berlin, (1981).Google Scholar
  16. K. Takegahara, H. Takahashi, A. Yanase and T. Kasuya, Solid State Commun., 39, 857 (1981).ADSCrossRefGoogle Scholar
  17. 13.
    G. Güntherodt, E. Kaldis, and P. Wachter, Solid State Commun., 15, 1435 (1974).CrossRefGoogle Scholar
  18. 14.
    A. Hasegawa and A. Yanase, J. Phys. Soc. J.pan, 42,492 (1977). A. Hasegawa, J. Phys. C:Solid State Phys., 13, 6147 (1980).ADSCrossRefGoogle Scholar
  19. 15.
    Y. Baer, R. Hauger, Ch. Zürcher, M. Campagna, and G. K. Wertheim, Phys. Rev., B18, 4433 (1978).ADSCrossRefGoogle Scholar
  20. 16.
    R. Siemann and B. R. Cooper, Phys. Rev. Letters, 44; 1015 (1980).ADSCrossRefGoogle Scholar
  21. 17.
    A. Yanase and A. Hasegawa, in:“Electron Correlation and Magnetism in Narrow-Band Systems,” T. Moriya, ed., Springer-Verlag, Berlin, (1981).Google Scholar
  22. 18.
    H. Bartholin, D. Florence, W. Tcheng-Si, and 0. Vogt, Phys. Stat. Sol., (a)24,631 (1974). H. Bartholin, D. Florence, W. Tcheng-Si, and 0. Vogt, Phys. Stat. Sol., (a)29, 275 (1975).Google Scholar
  23. 19.
    A. Furrer, W. Hâlg, H. Heer, and 0. Vogt, J. Appl. Phys. 50,2040 (1979) .Google Scholar
  24. 20.
    J. S. Griffith, “The Theory of Transition-Metal Ions,” Cambridge, London (1961).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • K. Takegahara
  • H. Takahashi
  • A. Yanase
  • T. Kasuya

There are no affiliations available

Personalised recommendations