Electronic Transport Properties of Metallic Ce Systems

  • F. Steglich
  • K. H. Wienand
  • W. Klämke
  • S. Horn
  • W. Lieke


Ce ions in a metallic environment give rise to a variety of fascinating many body phenomena, for example intermediate valence (IV), valence transitions and the Kondo effect1. Despite a controversial debate among spectroscopists2, there is widespread confidence that the above phenomena arise from the close proximity of the local 4f level of Ce and the Fermi level. Based on the Anderson model, in the limit of large Coulomb energy, an IV phenomenon should occur when the Fermi level EF intersects the 4f level. In a “high-temperature picture” this can be attributed to the action of charge fluctuations (“valence fluctuations”), which occur at a rate of the order of the 4f level width ∆. In the Born approximation ∆≃πN(EF) <v kf 2 >, where N(EF) is the conduction band density of states at EF per spin and vkf the matrix element for covalent 4f-conduction electron mixing. On the other hand, a Kondo effect is expected when the 4f level, at E4f, is reasonably well separated from EF, i.e., ∆<ε=EF−E4f. Therefore, to a good approximation, the Ce ions in Kondo systems can be considered to be trivalent, i.e. valence fluctuations can be considered to be unimportant. According to Schrieffer and Wolff4 the coupling between Ce3+ ions and conduction electrons can then be treated as an effective antiferromagnetic exchange interaction. We note that in the limit of negligible mixing, i.e. ∆<<ε, Ce3+ would behave similarly to “normal” rare-earth ions like Gd3+, in that its coupling to the conduction electrons would be rather weak and, eventually, ferromagnetic, i.e. governed by the intra-atomic Heisenberg exchange integral. These “normal” rare earths are sometimes referred to as exhibiting a “stable magnetic moment”.


Crystal Field Negative Temperature Coefficient Electronic Transport Property Kondo Effect Crystal Field Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    For a recent review, see: J.M. Lawrence, P.S. Riseborough and R.D. Parks, Rep. Prog. Phys. 44, 1 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    For a discussion of recent results, see: S. Hüfner and P. Steiner, submitted to Z. Phys. B.Google Scholar
  3. 3.
    P.W. Anderson, Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.R. Schrieffer and P.A. Wolff, Phys. Rev. 149, 941 (1966).CrossRefGoogle Scholar
  5. 5.
    M. Loewenhaupt, S. Horn and B. Frick, this conference.Google Scholar
  6. 6.
    K. Becker, P. Fulde and J. Keller, Z. Phys. B28, 9 (1977).Google Scholar
  7. 7.
    S. Horn, F. Steglich, M. Loewenhaupt and E. Holland-Moritz, Physica 107B, 103 (1981).Google Scholar
  8. 8.
    M. Loewenhaupt and E. Holland-Moritz, J. Appl. Phys. 50, 7456 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Kuramoto and E. Müller-Hartmann in: “Valence Fluctuations in Solids”, p. 139, L.M. Falicov, W. Hanke and M.B. Maple, eds., North Holland, Amsterdam (1981).Google Scholar
  10. 10.
    N. Hessel Andersen in: “Crystalline Electric Fields and Structural Effects in f-Electron Systems”, J.E. Crow, R.P. Guertin and T.W. Mihalisin, eds., Plenum, New York (1980), p. 373.Google Scholar
  11. 11.
    E. Umlauf, G. Pepperl and A. Meyer, Phys. Rev. Lett. 30, 1173 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    P. Fulde and I. Peschel, Adv. Phys. 21, 1 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    K. Winzer, Z. Phys. 265, 139 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    F. Steglich, Z. Phys. B23, 331 (1976).Google Scholar
  15. 15.
    See, e.g., the following review articles: K. Fischer, Springer Tracts Mod. Phys. 54, 1 (1970); G. Grüner and A. Zawadowski, Rep. Prog. Phys. 37, 1497 (1974).Google Scholar
  16. 16.
    Resistivity: B. Cornut and B. Coqblin, Phys. Rev. B., 4541 (1972); Thermopower: A.K. Bhattacharjee and B. Coqblin, Phys. Rev. B13, 3441 (1976).Google Scholar
  17. 17.
    M. Loewenhaupt, S. Horn and F. Steglich, Solid State Commun. 39, 295 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schafer, Phys. Rev. Lett. 43, 1892 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    A. Hasegawa, J. Phys. C: Solid State Phys. 13, 6147 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    K.H. WLenand, B. Elschner and F. Steglich, to be published.Google Scholar
  21. 21.
    P. Fulde, in: “Handbook on the Physics and Chemistry of Rare Earths, Vol. 2”, Ed. by K.A. Gschneidner Jr. and L. Eyring, North Holland, Amsterdam (1978), p. 295.Google Scholar
  22. 22.
    See, e.g., E.D. Ramos, J. Low Temp. Phys. 20, 547 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    K. Takegahara, H. Takahashi, A. Yanase and T. Kasuya, Solid State Commun. 39, 857 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    K. Winzer, Solid State Commun. 16, 521 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    W. Felsch, Z. Phys. B29, 211 (1978).Google Scholar
  26. 26.
    M. Croft and A. Jayaraman, Solid State Commun. 29, 9 (1979).ADSCrossRefGoogle Scholar
  27. 27.
    F. Steglich, W. Franz, W. Seuken and M. Loewenhaupt, Physica 86–88B+C, 503 (1977).Google Scholar
  28. 28.
    F. Steglich., in: “Festkörperprobleme (Adv. Solid State Physics)” Vol. XVII, p.319, J. Treusch, ed., Vieweg, Braunschweig (1977).Google Scholar
  29. 29.
    W. Franz, private communication and to be published. 20. J. Aarts, F.R. deBoer, S. Horn, F. Steglich and D. Meschede, Ref. 9, p. 301.Google Scholar
  30. 31.
    H. Lustfeld, submitted to Physica B.Google Scholar
  31. 32.
    P. Scoboria, J.E. Crow and T.W. Mihalisin, J. Appl. Phys. 50, 1895 (1979).ADSCrossRefGoogle Scholar
  32. 33.
    W. Franz, F. Steglich, W. Zell, D. Wohlleben and F. Pobell, Phys. Rev. Lett. 45, 64 (1980).ADSCrossRefGoogle Scholar
  33. 34.
    S. Doniach, Physica 91B, 231 (1977).Google Scholar
  34. 35.
    See: F. Steglich, C.D. Bredl, M. Loewenhaupt and K.D. Schotte, J. Phys. (Paris) 40–05, 301 (1979) and references cited therein.Google Scholar
  35. 36.
    K. Winzer and W. Felsch, J. Phys. (Paris) 39 - C6, 832 (1978).Google Scholar
  36. 37.
    T. Komatsubara, T. Suzuki, M. Kawakami, S. Kunii, T. Fujita, Y. Isikawa, A. Takase, K. Kojima, M. Suzuki, Y. Aoki, K. Takegahara and T. Kasuya, J. Magn. Magn. Mat. 15–18, 963 (1980).Google Scholar
  37. 38.
    B. Barbara, J. Boucherle, J.L. Buevoz, M.F. Rossignol and J. Schweizer, Solid State Commun. 24, 481 (1977).ADSCrossRefGoogle Scholar
  38. 39.
    S. Horn, F. Steglich, M. Loewenhaupt, H. Scheuer, W. Felsch, and K. Winzer, Z. Phys. B42, 125 (1981).CrossRefGoogle Scholar
  39. 40.
    P. Burlet, J. Rossat-Mignod, J.M. Effantin, T. Kasuya, S. Kunii and T. Komatsubara, Proc. 27th MMM Conference, Atlanta, 1981, J. Appl. Phys. (1982).Google Scholar
  40. 41.
    A.P. Murani, K. Knorr, K.H.J. Buschow, A. Benoit and J. Floquet, Solid State Commun. 36, 523 (1980).ADSCrossRefGoogle Scholar
  41. 42.
    S. Horn, E. Holland-Moritz, M. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit and J. Floquet, Phys. Rev. B23, 3771 (1981).Google Scholar
  42. 43.
    K. Andres, J.E. Graebner and H.R. Ott, Phys. Rev. Lett 27, 1779 (1975).ADSCrossRefGoogle Scholar
  43. 44.
    W. Franz, A. Griessel, F. Steglich, and D. Wohlleben, Z. Phys. B31, 7 (1978).Google Scholar
  44. 45.
    W. Lieke, N. Rauchschwalbe, C.D. Bredl, F. Steglich, J. Aarts and F.R. deBoer, see Ref. 40.Google Scholar
  45. 46.
    N.F. Mott, Phil. Mag. 30, 403 (1974).ADSCrossRefGoogle Scholar
  46. 47.
    W. Klämke, H. Biesenkamp, S. Horn, M. Schildwächter, W. Lieke and F. Steglich, to be published.Google Scholar
  47. 48.
    J.T. Schriempf, Phys. Rev. Lett. 20, 1034 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • F. Steglich
  • K. H. Wienand
  • W. Klämke
  • S. Horn
  • W. Lieke

There are no affiliations available

Personalised recommendations